
Avoiding Instruction-Centric Microarchitectural Timing
Channels Via Binary-Code Transformations

Michael Flanders
mkf727@cs.washington.edu

University of Washington
USA

Reshabh K Sharma
reshabh@cs.washington.edu

University of Washington
USA

Alexandra E. Michael
aemichae@cs.washington.edu

University of Washington
USA

Dan Grossman
djg@cs.washington.edu
University of Washington

USA

David Kohlbrenner
dkohlbre@cs.washington.edu

University of Washington
USA

Abstract
With the end of Moore’s Law-based scaling, novel microar-
chitectural optimizations are being patented, researched, and
implemented at an increasing rate. Previous research has
examined recently published patents and papers and demon-
strated ways these upcoming optimizations present new secu-
rity risks via novel side channels. As these side channels are
introduced by microarchitectural optimization, they are not
generically solvable in source code.

In this paper, we build program analysis and transformation
tools for automatically mitigating the security risks introduced
by future instruction-centric microarchitectural optimizations.
We focus on two classes of optimizations that are not yet
deployed: silent stores and computation simplification. Silent
stores are known to leak secret data being written to memory
by dropping in-flight stores that will have no effect. Compu-
tation simplification is known to leak operands to arithmetic
instructions by shortcutting trivial computations at execution
time. This presents problems that classical constant-time tech-
niques cannot handle: register spills, address calculations,
and the micro-ops of complex instructions are all potentially
leaky. To address these problems, we design, implement, and
evaluate a process and tool, cio, for detecting and mitigating
these types of side channels in cryptographic code. cio is a
backstop, providing verified mitigation for novel microarchi-
tectural side-channels when more specialized and efficient
hardware or software tools, such as microcode patches, are
not yet available.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04.
https://doi.org/10.1145/3620665.3640400

ACM Reference Format:
Michael Flanders, Reshabh K Sharma, Alexandra E. Michael, Dan
Grossman, and David Kohlbrenner. 2024. Avoiding Instruction-
Centric Microarchitectural Timing Channels Via Binary-Code Trans-
formations. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Vol-
ume 2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3620665.3640400

1 Introduction
Recent research has revealed many types of information leak-
age from microarchitectural (uarch) optimizations, leading
to a growing family of side-channel attacks on sensitive
software. These attacks rely on architecturally-correct, but
unanticipated, uarch behavior such as side effects of specula-
tion [36, 54], prefetchers [52, 58], data-dependent instruction
timings [9], cache behaviors [47, 64], and more.

These attacks arise from the accelerating adoption of exotic
uarch optimizations driven by the slowing of Moore’s Law
and the end of Dennard scaling. Prior work by Sanchez Vi-
carte et al. [51] surveyed the architecture literature to identify
likely-to-be-deployed uarch optimizations with novel security
implications. Since that publication, one considered family
of optimizations (data memory-dependent prefetchers) now
is known to exist in multiple processors [30, 58]. Another, a
limited form of value prediction that sometimes predicts 0 for
the upper-half result of 64-bit divisions, has been documented
in Intel CPUs [46], and a third (silent stores) is referenced by
name in the RISC-V Instruction Set Manual [59].

While the vast majority of software neither attempts to
be nor needs to be safe from such attacks, mitigation for
side channels is generally an explicit goal for cryptographic
libraries, kernels, and other security-conscious software. Com-
munity-driven rules [11], combining folklore and research,
have developed over time to define ‘safe’ programming styles
that avoid known sources of leakage. More formal analysis al-
lows defining and evaluating if a program is actually constant-
time (CT): the program’s run time does not vary based on

1

https://doi.org/10.1145/3620665.3640400
https://doi.org/10.1145/3620665.3640400
https://doi.org/10.1145/3620665.3640400


secret inputs. Generally, well-written cryptographic libraries
provide a CT guarantee covering at least key material.

However, avoiding leakage by uarch optimizations specifi-
cally has been a significant, often confusing, challenge [2, 28,
62, 66]. With each publicly revealed optimization, we update
the rules for what is ‘safe’, necessitating a rewrite or review
of all our cryptographic software. This cycle is exacerbated
by the dominant reactive pattern in security: attack research
first discovers and publicizes the existence of a previously un-
known uarch optimization, subsequent work builds effective
attacks against multiple targets, and finally tools are proposed
for defending against this specific optimization.

Our approach is to instead build tools for proactive miti-
gation that consider how software can mitigate the impact of
future uarch optimizations as soon as they appear. As a proac-
tive approach, we create general mitigation transform meth-
ods targeting a strong threat model. These general approaches
can be tuned to a future optimization implementation when
found in the wild. Additionally, with the growing interest in
developing security-conscious compilers [13, 19, 38, 56, 57],
looking forward at potential future side channels will help
inform what capabilities such compilers might need.

Recent work by Sanchez Vicarte et al. [51] performed a
security analysis of the computer architecture literature to
identify a broad family of optimizations with security im-
plications called instruction-centric optimizations, of which
we focus on a subset in this work. We specifically consider
optimizations that trigger only as a function of register values
and memory values that are operands to a single instruction.
We do not consider optimizations that examine other in-flight
instructions or memory not being read/written to.

We specifically focus on two exemplar classes of optimiza-
tions: silent stores and computation simplification. Silent store
optimizations opportunistically drop in-flight memory stores
when the value being stored matches the value already in
the memory location. Computation simplification covers a
broad class of optimizations that propose shortcuts, at execu-
tion time, for arithmetic operations with trivial results, e.g.,
r1 := r1 + r2 when r2 = 0. To our knowledge, neither silent
stores nor the specific computation simplifications we exam-
ine have yet been deployed in microarchitectures. However,
limited forms of computation simplification, e.g., small inte-
ger operands to division operations and power-of-two divisors
for some floating-point operations, have been long deployed
in most x86 processors, and the RISC-V Instruction Set Man-
ual [59] mentions silent stores. We use these two families of
optimizations as case studies as they present challenges not
seen in classic constant-time techniques or Spectre-related
mitigations. Since even register spills can be optimized by
silent stores, detection, mitigation, and verification must hap-
pen at the assembly level. Further, since our mitigations insert
and substitute assembly instructions, care must be taken that
instructions added to mitigate one optimization do not leak

under the other. Importantly, we show—for the first time—
concrete examples of uarch side channel mitigations that
exhibit a composition safety problem.

Silent stores and computation simplification are also gen-
eralized optimizations, with most proposals focusing on op-
erations, not specific opcodes. Thus, they can conceptually
apply to the majority of instructions in a compiled x86_64
binary, and mitigating every instance will impose drastic over-
heads. To reduce these overheads, we need analyses that are
as precise as possible to eliminate as many instructions from
needing mitigation as possible. This requires precise reason-
ing about values of registers and memory, which is difficult
to scale to codebases such as cryptographic libraries.

To mitigate leakage, we build instruction-centric trans-
formations that can be applied to instructions identified as
potentially leaky, preventing any possibility of optimization
occuring. These transforms substitute a leaky instruction with
a sequence of non-leaky instructions that are semantically
equivalent to the original instruction: the replacement instruc-
tion sequence preserves the software-observable behavior of
the program. These mitigations have a straightforward appli-
cation strategy, can be automatically and efficiently verified
for correctness and safety, and lend themselves to automated
verification of mitigated binaries using static analysis.

Our approach is embodied in our tool, cio—countering
instruction-centric optimizations—which serves as a foun-
dation for building mitigations for instruction-centric opti-
mizations. Our intention is that research groups finding novel
microarchitectural side-channels will either independently, or
in collaboration with others, use their expertise in the spe-
cific uarch to help develop leakage descriptions and checking
passes when releasing a new vulnerability. At this point, any-
one with ideas for a transformation pass can build one using
cio and our mitigation process. This process starts with de-
signing transforms and verifying their safety and correctness,
as well as the composition of multiple transforms. Next, mit-
igation developers create checkers that are synergistic with
their transforms; these checkers are used both to determine
which instructions to transform and to verify the safety of the
final transformed binary. These transforms and checkers are
then provided to cio, along with the source for the library or
program to be hardened. cio finally produces a binary that
guarantees that no secret input to an instruction can cause
one of the chosen optimizations to trigger. Maintainers of
cryptographic libraries can release the hardened binary for
concerned users until a more long-term solution is found.

Contributions. In total, our contributions are:

• A process for mitigating instruction-centric side chan-
nels using transforms.

• cio, a tool that provides build system and compiler
support for detecting leaks, applying transforms, and
verifying the safety of mitigated code.

2



• Tools to automatically verify the safety and equivalence
of transforms and their order of application (offline).

• Transform approaches for silent stores and computation
simplification that are formally verified to be safe (does
not leak) and correct (semantically equivalent).

• Checkers for silent stores and computation simplifica-
tion that can detect leaky instructions in binaries and
prove the safety of the final, mitigated binaries.

• To the best of our knowledge, the first concrete exam-
ple of microarchitectural side-channel mitigations that
exhibit a composition safety problem.

• An evaluation of the overhead of applying our mitiga-
tions to a cryptographic library—libsodium [24].

Organization of the paper. In the rest of this paper, we
discuss the existing tools and relevant background (Section 2)
and our threat model (Section 3). We then describe the overall
design and approach of cio (Section 4) as well as two case
studies in building transforms and mitigations for computa-
tion simplification and silent stores (Sections 5 and 6). We
also cover additional tools we developed and the composi-
tion safety problem (Section 7). To understand the impact
of our mitigations, we benchmark our entire process and all
mitigations on libsodium (Section 8). Finally, we discuss our
mitigations and limitations (Section 9).

Release of tools. We will make all tools and all of our
evaluation code and data available publicly upon publication.

2 Background
Building constant-time code is difficult in the general case,
and fantastically frustrating in the presence of uarch side-
channels. This has not stopped security-conscious software
from attempting to close off these attack vectors as quickly
as they appear. For example, x86 uarch side-channels have
resulted in 10 separate configuration options in the Linux
kernel1 for Spectre V2 mitigations alone, not to mention
numerous flags for each of MDS [18, 55], SSB, L1TF [54],
and even the retpoline Spectre mitigations themselves [62].

2.1 Tools for Constant-Time Code
Tools for constant-time programming have taken a number of
different approaches. The vast majority of these tools consider
the classic CT properties of no secret-dependent branches,
known variable-time instructions, or memory accesses. Re-
cent tools have included speculative versions of these proper-
ties, which is orthogonal to the problems cio considers.

Most of these tools [7, 8]2 are verification tools, which
validate an implementation as meeting specific CT proper-
ties. To make building CT code itself easier, sensitive code
can be written in domain-specific languages or language sub-
sets [19, 60], which allow for compilation to a guaranteed CT

1https://github.com/torvalds/linux/blob/5d0c230f1de8c7515b6567d9afb
a1f196fb4e2f4/arch/x86/kernel/cpu/bugs.c#L1383
2See https://crocs-muni.github.io/ct-tools/ for more.

binary. Alternatively, there also exist libraries for common
functionality [48] needed in CT programs.

Most relevant to cio are tools that provide compiler trans-
forms [15, 21, 25, 63], allowing a non-CT program to be
transformed into one that is CT. Notably, Dinesh et al. [25]
provide SynthCT, which takes in a defined ‘safe’ subset of an
ISA, and can synthesize replacement instruction sequences
for instructions outside of the safe subset. This process al-
lows for instructions newly found to be variable-time with
respect to operand values to be replaced automatically with
ones that are not. The SynthCT approach is complementary
to cio, as unlike cio SynthCT considers all instances of a
given instruction dangerous, regardless of operand values.

2.2 Hardware Configuration for Side-channel
Mitigation

Processor vendors have responded to many of the discov-
ered microarchitectural side-channels by releasing microcode
patches that allow configuration bits to enable or disable spe-
cific optimizations. These bits operate as either boot-time
global settings, or as per-process OS-managed state bits simi-
lar to FPU configurations. As with FPU state flags, these bits
are generally global state for the hardware thread, with all the
difficulties that accompany that. FPU state flags themselves
are notoriously difficult to manage in general with unexpected
effects caused by loading libraries [26] and documented secu-
rity impacts for web browsers [37].

For example, Intel responded to attacks abusing Specula-
tive Store Bypass (SSB) optimizations by adding the SSB
Disable (SSBD [3]) option, allowing privilged software to
disable SSB by setting a configuration bit in an MSR. Con-
ceptually, this approach is great for sensitive software: it can
request that the kernel disable SSB if it presents a threat, and
leave other optimizations enabled. In practice, it can be diffi-
cult to use: most Linux distributions provide a syscall to set
the option for the entire process tree, but it can only be set
system wide via registry settings in Windows.

Ideal hardware configuration bits would be easy to set and
guarantee coverage for only specific program regions, allow-
ing optimizations to make the most of the rest of the program.
cio can complement any version of these configuration bits
by identifying where to apply configuration bits rather than
transformations.

2.3 Hardware Support for Constant-Time Instructions
Specifically relevant to the optimizations considered here,
ARM and Intel have each announced data-independent timing
standards for their processors. These standards provide a list
of supported instructions and a run-time-configurable state
bit to guarantee that the covered instructions’ execution times
are independent of their operand values. Broadly, these are
intended to offer a manufacturer-backed promise of constant-
time instruction execution when enabled.

3

https://github.com/torvalds/linux/blob/5d0c230f1de8c7515b6567d9afba1f196fb4e2f4/arch/x86/kernel/cpu/bugs.c#L1383
https://github.com/torvalds/linux/blob/5d0c230f1de8c7515b6567d9afba1f196fb4e2f4/arch/x86/kernel/cpu/bugs.c#L1383
https://crocs-muni.github.io/ct-tools/


ARM’s Data Independent Timing (DIT) [5] standard was
(initially [1]3) released as part of the ARMv8.4-A standard in
2017, and offered the ability for any exception level to enable
DIT by setting the PSTATE.DIT configuration bit at run time.
Relevant to the optimizations we consider, DIT is guaran-
teed to cover most arithmetic instructions and memory stores.
Unfortunately, at this time the only processors known to the
authors to support PSTATE.DIT are the Apple M-series CPUs.
This leaves software on most ARM-based processors unable
to request constant-time behavior for arithmetic instructions.

In 2022, Intel released the Data Operand Independent Tim-
ing (DOIT) [6] standard, promising input-independent execu-
tion times for most arithmetic and store operations on both
scalars and vectors. Unlike DIT, DOIT can only be enabled by
the kernel (affecting all subsequent execution), and cannot be
enabled by user-mode software. DOIT is also not guaranteed
to operate as expected under speculative execution.4 No op-
erating system as of December 2023 allows for unprivileged
software to enable DOIT at run time.

There are also open questions about how comprehensive
such modes will be in practice. For example, Apple’s Data-
dependent Memory Prefetcher (DMP) is known to introduce
security challenges [58] where a store’s value does not affect
that store’s execution time, but may affect timing of future
stores. This effect arguably does not violate the semantics of
DIT, and we have experimentally validated that the experi-
ments released as part of Sanchez Vicarte et al. demonstrate
DMP activation with PSTATE.DIT set. Conversely, Intel’s
FAQ on similar prefetching behavior [30] explicitly states
that DOIT disables any such DMP behavior when enabled.
From this, it is clear that these modes are not ‘magic’: the
architects implementing them must make the same decisions
about what features are covered that a software defense does.
Since the end-user cannot customize these modes, sensitive
software must be able to fall back to a software defense when
their threat model differs from the vendor’s.

We believe that these standards are a step in the right direc-
tion for enabling sensitive software to execute safely. How-
ever, with no extant AMD standard, limited ARM support,
required OS support for Intel, reliance on global state man-
agement, and space for creative interpretation in coverage,
side-channel-aware software cannot fully rely on DIT/DOIT
modes for protection. It is therefore critical to have a software-
only approach that can verify side-channel-free execution in
the presence of uarch optimizations of the types we consider
here.

3This document was later edited to remove the DIT announcement.
4“Developers handling secret data that should only ever be processed in a
data operand independent timing manner may need to consider speculative
execution vulnerabilities. These vulnerabilities may cause the secret data to
be handled in a data operand dependent manner and developers may need to
apply additional mitigations.” [6]

3 Threat Model
Since we specifically target uarch optimizations that do not
have known in-the-wild implementations, we cannot rely on
a detailed model of what aspects of program execution the
attacker can observe. Thus, we assume a strong adversary
capable of observing any time the optimization in question
happens at run time. We do not consider transient instruction
execution in our analyses. This means we may miss cases
where secret inputs only ever reach instructions transiently.
When these optimizations exist in real processors, the ob-
server model may be relaxed based on implementation details
to reduce the application of mitigations.

We assume that the target program is constant-time if exe-
cuted on a processor without the considered optimization(s).
The program must not leak information from known channels
such as secret-dependent memory accesses, secret-dependent
branches, or known variable time instructions such as idiv.
We will not introduce any new side-channels of these types
via our mitigations.

In practice, this means that we expect that our input pro-
gram is a cryptographic library, already hardened against
known attack vectors. That library now needs to be protected
from uarch optimizations appearing on a new processor.

Silent Stores. We assume the adversary can detect if any
individual store is silenced or not. We assume this is possi-
ble via measuring store queue pressure, memory bandwidth
utilization, execution time, or cache state changes.

We consider all explicit stores that exist in the target pro-
gram after compilation, including register spills and function
argument pushes. We do not consider stores that occur outside
of the program’s control, e.g., the kernel saving registers on a
system call or context switch.

Computation Simplification. We assume the adversary can
detect any time an instruction’s execution is optimized to a
trivial case at run time, as a function of values in registers or
memory. We assume this is possible by observing functional
unit utilization, or measuring execution time. As with silent
stores, we consider all relevant instructions that occur in the
target program post-compilation.

4 Design of cio
Our tool, cio, provides a framework for mitigating uarch side
channels created by instruction-centric optimizations. cio
takes in the source for the library or program to be hardened,
and produces a drop-in replacement binary. This process guar-
antees that chosen optimizations do not trigger as a function
of secret data at run time. Thus, the final binary leaks no addi-
tional secret data on a processor with the chosen optimizations
as compared to one without.

To mitigate a specific family of optimizations, cio requires
a transformation pass and a leakage checker specific to the
optimizations. We currently provide such components for two

4



Figure 1. Internal structure and overall toolflow of cio.

optimizations: silent stores and computation simplification,
though more can be added.

To run cio on a codebase, users first annotate sensitive
arguments to public API functions, select the set of optimiza-
tions to prevent, and invoke cio. cio then performs four steps:
compilation (Section 4.1), checking (Section 4.2), mitigation
(Section 4.3), and finally double-checking (Section 4.4).

During this four-step process, cio coordinates three tools
and their communication: a build system, LLVM [39], and
BAP (the Binary Analysis Platform) [17]. Figure 1 shows
the internal structure of cio and each of the steps it takes to
produce mitigated binaries.

4.1 Step 1: Compilation
cio wraps a build system like makeand starts by compiling the
code base as usual using our modified LLVM. Our modified
LLVM additionally saves user-provided secret annotations
to files and reserves scratch registers for transforms to later
use. Since the compiler only sees individual translation units,
BAP will later use the annotations file to propagate secrets
through the callgraph using an interprocedural taint analysis.
Some of our transforms cannot use memory for scratch space
(Section 6), so we must have scratch registers available. We
reserve these registers during register allocation.

4.2 Step 2: Checking
After the compilation step, cio runs static program analyses
on the compiled binary, and the results of these analyses are
used by optimization-specific checkers. Checkers visit instruc-
tions, using the state and values produced by the analyses to
check against a safety specification.

Our checkers use a pruning approach to detecting leaks:
they assume every instruction could leak and then use their
analyses to filter out or prune instructions that definitely do
not leak. These pruned instructions will not be transformed
by later mitigation transform passes.

This pruning approach helps in designing effective check-
ers that can scale up to run on cryptographic libraries. Leaky
instruction-centric optimizations tend to target instructions

that occur frequently in compiled code. To avoid transform-
ing all of these instructions, effective checkers must precisely
reason about operand values to prune as many non-leaky in-
structions as possible. Mitigation developers can trade-off
between precision and speed by iteratively adding and tun-
ing analyses—with our pruning approach, any stopping point
during this process is safe.

We implement our checkers and program analyses using
the Binary Analysis Platform (BAP) [17]. BAP lifts assembly
instructions into BAP IR: a minimal, ISA-agnostic, intermedi-
ate language resembling CPU micro-code. BAP also provides
tooling for data-flow, abstract interpretation, and symbolic
analyses, which we use in our case studies.

4.3 Step 3: Mitigation
After the checkers have pruned all provably non-leaky instruc-
tions, the checkers emit a list of remaining, potentially-leaky
instructions. cio then recompiles the cryptographic library,
providing this list to optimization-specific transform passes
in LLVM.

These passes apply transforms by substituting each potenti-
ally-leaky instruction with a semantically equivalent sequence
of non-leaky instructions. The conditions required of trans-
forms to preserve the program’s observable behavior will be
different for each ISA and optimization and can be defined to
allow optimized versions of transforms. For example, x86_64
transforms do not need to set and clear unused status flags
even if the original instruction sets and clears these flags.

We position these transform passes late in LLVM’s compi-
lation pipeline as a Machine IR (MIR) pass [16, 42]. LLVM’s
MIR is a low-level wrapper around ISA-specific assembly
instructions; it is the final intermediate representation of trans-
lation units that transformation passes can be run on. Writing
passes at the MIR level lets us catch low-level details like
register spills that cannot be mitigated in source code. We also
position our passes immediately before the assembly printing
pass to avoid the possibility of later compiler optimizations
breaking our passes’ security guarantees.

5



4.4 Step 4: Double-Checking
In the final double-checking step, cio runs the same analyses
and checkers from the checking step but this time expecting
all instructions to be pruned as non-leaky. If no leaky instruc-
tions remain, then this step has verified that the final binaries
are safe in that none of the targeted optimizations can occur as
a function of secret data. If any potentially-leaky instructions
remain, then the entire build process will be stopped, and no
final binary will produced.

For checkers to verify the safety of the transformed binary,
they must be able to verify transforms as a standalone se-
quence of instructions. As all potentially-leaky instructions
will be transformed in the previous step, the instructions that
need to be checked in the transformed binary will only be
those introduced by transforms. This means that if checkers
can verify transform instruction sequences in isolation under
their most general input states, they will also be able to verify
the safety of the final, transformed binary—all states reach-
ing a transform site will be a subset of these most general
states. We further discuss the co-design of checker analyses
and transforms in Sections 5.4 and 6.2.

While we use additional tools to formally verify the safety
and correctness of our transforms offline (Section 7), the
implementation of our transform compiler passes and the rest
of LLVM’s pipeline are not verified. Thus, using checkers
to verify the safety of the final binary improves confidence
that the implementation of our transform passes in LLVM is
correct.

4.5 Building Mitigations in cio

With this design in mind, we built complete mitigation sys-
tems for computation simplification and silent stores. Both
mitigation systems are built using the four steps of cio, dif-
fering only in their checkers and transforms (see Figure 1).

5 Case Study: Computation Simplification
Computation simplification (CS) is a family of techniques that
simplify the execution of instructions when operand values
satisfy certain conditions [27, 51]. Such optimizations are
common for floating-point operations in today’s processors,
with demonstrated security impacts [37].

Consider the operation RAX := RAX * RCX, which in
x86_64 could be executed as the instruction mul rax, rcx.5

If, at execution time, the value of RCX is 1, then the execution
of this instruction could be simplified to a move, but not
eliminated as the instruction has critical side effects such as
status flags. Table 1 contains a complete list of the additional
operations we consider, their corresponding instructions, and
under what conditions they can be simplified; we handle all
of the listed CS cases.

5Using Intel syntax. All following assembly code also uses Intel syntax and
references x86_64 instructions.

These simplifications create side channels when they occur
as a function of sensitive data [51]. Using the same example, if
RCX holds secret data and is either the value 1 or 3 at run time,
then the case where RCX = 1 causes a difference in execution
behavior measurable by the adversary under our threat model.
In most CS cases the difference likely manifests as reduced
pressure on the ALU or reduced instruction execution time
for more complex instructions.

Since we focus on general, proactive mitigation, we cre-
ated three transform approaches for CS: pure arithmetic trans-
forms, split-and-recombine, and conditional moves. These
transforms wrap or replace unsafe instructions to prevent any
optimizable operands from reaching the targeted instruction
or any other instruction added by the transform.

Operation: CS case(s) Instruction Approach

X + Y:
X or Y = 0

[27, 35]

add (≤32-bit) A

add (64-bit) SR

padd (vector) A

X − Y:
Y = 0
[35]

sub (≤32-bit) A

sub (64-bit) SR

X × Y:
X or Y ∈ {0,1}

[27, 50]

[i]mul (≤32-bit) A

[i]mul (64-bit) SR

X & Y:
X or Y ∈ {0,0xFF. . . F}

and (32-bit) A

and (8/16/64-bit) SR

X ∥ Y:
X or Y ∈ {0,0xFF. . .F}

or (32-bit) A

or (8/16/64-bit) SR

X ⊕ Y:
X or Y ∈ {0,0xFF. . . F}

xor (32-bit) A

xor (8/16/64-bit) SR

X ≪ Y, X ≫ Y:
Y = 0

sh[lr] C

sa[lr] C

X ≪ Y, X ≫ Y:
X = 0

sh[lr] (≤32-bit) A

sa[lr] (≤32-bit) A

sh[lr] (64-bit) SR

sa[lr] (64-bit) SR

X ≫ Y:
X =0xFF. . .F

sar (≤32-bit) A

sar (64-bit) SR

Table 1. CS optimization cases [10, 32, 33, 65], correspond-
ing x86_64 instructions, and the transform method used. For
approach, ‘A’ is an arithmetic transform, ‘SR’ is split-and-
recombine, and ‘C’ is cmov.

6



1 mov r11, rax

2 mov eax, eax

3 sub rax, 0x80000000

4 sub rax, 0x80000000

5 sub rcx, rax

6 mov ecx, ecx

7 mov rax, r11

(a) sub ecx, eax: arithmetic trans-
form.

1 mov r10, 0x00010000

2 mov r10w, cx

3 mov cx, 0x1

4 mov r11, 0x00010000

5 mov r11w, ax

6 mov ax, 0x1

7 and rcx, rax

8 and r10, r11

9 mov cx, r10w

10 mov ax, r11w

(b) and rcx, rax: split-and-
recombine transform.

1 sub eax, 0x0

2 setz r11d

3 cmovz r12d, eax

4 cmovz r10d, ecx

5 cmovz eax, r11d

6 sub ecx, eax

7 sub r11, 0x0

8 cmovnz ecx, r10d

9 cmovnz eax, r12d

(c) sub ecx, eax: cmov trans-
form.

Figure 2. Examples of each of our CS transformation approaches. Registers r10–r12 are scratch registers.

5.1 Arithmetic Transforms
Figure 2a shows our arithmetic transform approach applied
to sub ecx, eax. Upon extending 32-, 16- or 8-bit operands
to a larger register size, we can set high bits in the extended
register to change the range of register values. For example,
by zero-extending a 32-bit operand to 64 bits and setting the
33rd bit, we change its range of values from 0,232 − 1 to
232,233 −1, eliminating unsafe values such as 0 or 1. We can
then safely execute the original instruction over all 64 bits,
and take the lowest 32 (or fewer, depending on the instruction
bitwidth) bits of the result as the output of the transform.
We do not need to do any additional post-processing on the
output, because performing an arithmetic operation over 64
bits instead of 32 or fewer does not change the result in the
lower bits.

The arithmetic approach for transforming potentially leaky
instructions is preferred for most instructions, because it re-
quires few scratch registers and is relatively short and effi-
cient compared to our next two methods. However, this type
of transformation does not work for instructions operating
over 64-bit operands, as we do not have access to general
purpose registers over 64 bits in size. In addition, some bit-
wise instructions can be transformed more efficiently with
our split-and-recombine approach.

5.2 Split-and-Recombine
Our second approach, split-and-recombine, handles most of
the remaining instructions, including those operating over
64-bit operands and most bitwise instructions.

Such a split-and-recombine transform for and rcx, rax is
shown in Figure 2b. In this approach, we split each 64-bit
operand register into two smaller pieces, each in their own
registers, generally along a 48-/16-bit split. We avoid a 32-/32-
bit split due to x86_64’s register aliasing semantics—moving
a value into the bottom 32 bits of a register clears the upper 32
bits, but moving a value into the bottom 8 or 16 bits does not

clear the upper bits. Once the register values are split, we now
have ‘extra’ bits in the full width of temporary registers. We
set some of these extra bits to prevent unsafe values in both
pieces of each split operand, such that the range of values for
each register excludes unsafe values. We then perform the
original instruction on the smaller registers and recombine
the results.

This approach works naturally for bitwise instructions such
as and, or, and xor. We also use the split-and-recombine
approach to mitigate 64-bit arithmetic and shift instructions,
where the splitting step remains as described above, but the
recombination step becomes more complex. For example, re-
combining the operands for a shift instruction requires adding
the two operands together because the shift amount may not
be known at compile time and may not fall along neat 8- or
16-bit boundaries. This addition must in turn be made safe
from CS optimization.

5.3 Conditional Move
Our final transform method, conditional move or cmov, is
general enough to work for any instruction, but at a high cost.

This transform takes advantage of the guaranteed constant-
time behavior of the cmov instructions [31] to generate logical
branches in straight-line code. These instructions only per-
form the specified move if a status flag is set. For example,
cmovz eax, ecx moves the value in ecx to eax only if the
zero flag is set. Otherwise, the instruction is a no-op.

When an instruction is simplifiable, we can use the cmov
instruction to write a substitute that has two logical branches:
one for the simplified case and one for the normal case. In
both cases, the target instruction is executed exactly once. In
the simplifiable case, our transform substitutes static values
into the target instruction, and then sets the output registers
to the correct values after execution. In the non-simplifiable
case, the cmov instructions are no-ops and do not change any
inputs or outputs to the target instruction.

7



However, cmov transforms are costly. For each unsafe value
of each operand, the cmov approach requires many instruc-
tions and at least one dedicated scratch space. In the case
of instructions with multiple potentially unsafe values, this
approach rapidly becomes infeasible. We therefore reserve
cmov for the few instructions that the arithmetic and split-and-
recombine approaches cannot handle.

Figure 2c shows how our cmov transform could mitigate
the instruction sub ecx, eax. In practice, we only use cmov
transforms to handle shift instructions with a dynamic shift
size, and only for unsafe values of the shift size itself. We
continue to use an arithmetic or split-and-recombine approach
to handle unsafe values in the shifted register.

5.4 Checker
The CS checker visits all arithmetic, bitwise, and logical in-
structions and checks them against the CS safety specification,
codified according to Table 1.

To verify transforms in isolation (Section 4.4) while still
scaling to verify transformed cryptographic code, we use
abstract interpretation [22]. Our CS checker first runs an in-
terprocedural taint analysis, propagating developer-annotated
secret arguments to all functions in the callgraph of the public
API function. This taint analysis also prunes instructions that
would not leak sensitive data if CS optimized.

Next, the checker runs an interval analysis [22] extended
with machine-integer semantics, the trace partitioning do-
main [43], and the abstract memory domain from Miné [44].
The interval analysis with machine-integer semantics is al-
ready enough to verify most of our transforms; it is expressive
enough to determine if an operand’s value could be equal to
0, 1, or the all-one bitvector, and it also tracks the possible
value ranges of variables. Tracking these value ranges lets
the checker verify our arithmetic and split-and-recombine
transforms, as they operate by setting high bits in operands,
effectively shifting the range of values of an operand so as to
exclude unsafe values.

To verify our cmov transforms, we extend the interval do-
main to be path sensitive using the trace partitioning do-
main [43]. The trace partitioning domain allows us to com-
pute and maintain execution traces over the control flow graph
on which abstract interpretation will then run. Though each
transform has only one possible execution path, the cmov in-
struction effectively partitions the execution traces into two
paths: one where an operand has an unsafe value and another
where it does not. Using a pre-analysis, we partition abstract
interpreter flow into two traces at each cmov instruction and
later merge these paths when keeping them distinct no longer
provides additional precision.

Since we focus on x86_64 in this work, many instructions
we use or transform use register-indirect addressing, in which
an instruction involves a computation plus a memory load or
store (e.g., add [eax], ecx or add eax, [ecx]). To handle
these instructions—as well as boost precision during initial

checking—we extend the interval abstract domain to the ab-
stract memory domain [44]. The abstract memory domain
effectively runs a value-set analysis [12], uniformly represent-
ing pointers, register values, and memory contents as intervals
with extra type information.

6 Case Study: Silent Stores
A silent store optimization occurs when an instruction at-
tempts to store a value to a memory location that already
holds that value [34, 40, 41]. Such a store can be skipped and
never issued to the memory system, reducing memory traffic.

When stores are dropped based on a secret value, the secret
value can be leaked through differences in execution time or
uarch state observable by attackers. For example, zeroing a
cryptographic key may vary in the number of stores issued
depending on the number of zero bytes in the key.

The security implications of silent stores have been well
studied in Sanchez Vicarte et al. [51] where the authors pro-
vide an implementation of silent stores using the gem5 sim-
ulator [14] and an attack against a classically constant-time
implementation of Bitslice AES128 [49]. The attack demon-
strates that under worst-case conditions, even a single attacker-
prepared silent store is enough to leak a secret key.

To make matters worse, stores can be silenced in any form,
including register spills, stack arguments, or even on saving
register state for syscalls. Thus, it is impossible to avoid
secret context being stored to memory during cryptographic
computation without compiler support.

Mitigating silent stores is tricky, and our approach assumes
the target uarch does not implement store buffer merging for
nearby writes to the same memory location. Concretely, we
assume that no such store merging occurs before the silent
store implementation checks for the possibility of dropping
the store. Some ARM processors have such merging6 (but not
silent stores) and might require a different transform.

6.1 Transforms
For a store of value Y, if the contents of the target memory
location is the value X, then, under our threat model, we say a
store of Y to that memory location can be silenced if X = Y.

The insight behind our silent store transforms is that, given
bitvectors X and Y, we can always produce a third bitvector Z
such that X != Z and Y != Z. We compute Z by concatenating
the high bits of X and the low bits of Y, and then inverting the
entire Z value. We then insert a blinding store of Z before the
original store of Y. Since X != Z, the blinding store cannot be
silent, and since Y != Z, the original sensitive store instruction
cannot be silent.

Figure 3a shows our transform for a 64-bit wide store on
x86_64: mov [addr], rax. Line 1 loads the X value, lines 2

6https://developer.arm.com/documentation/101924/0002/Memory-syste
m/Store-buffer/Store-buffer-merging

8

https://developer.arm.com/documentation/101924/0002/Memory-system/Store-buffer/Store-buffer-merging
https://developer.arm.com/documentation/101924/0002/Memory-system/Store-buffer/Store-buffer-merging


1 mov r11, [addr]

2 mov r11b, al

3 not r11

4 mov [addr], r11

5 mov [addr], rax

(a) mov [addr], rax

1 mov r11b, [addr]

2 and r11b, 0xF0

3 mov r10b, al

4 and r10b, 0x0F

5 or r10b, r11b

6 not r10b

7 mov [addr], r10b

8 mov [addr], al

(b) mov [addr], al

Figure 3. SS transforms. r10/r11 are scratch registers, addr
is the store address, and *addr or rax may hold sensitive
data.

and 3 compute the Z value, line 4 is our blinding store of Z,
and line 5 is the original store that is now safe from silencing.

This transform uses x86_64’s register aliasing semantics
to compute the Z value: writing the bottom 8 or 16 bits of a
register does not zero out the upper bits of the register. We
use this to concatenate bits from X and Y by writing the low
bits of one register directly into another (line 2).

This approach works for 16-, 32- and 64-bit-wide stores on
x86_64 but not for 8-bit-wide x86_64 stores. In such cases,
transforms can compute Z by selecting and concatenating bits
using bitwise and and or (Figure 3b).

Note that our approach requires the use of at least one
scratch register. Since all stores inserted by a transform must
be silent store safe, we cannot use any scratch memory.

6.2 Checker
Our SS checker will visit all store instructions and check
a safety specification: a store is safe from silencing if the
store value and the value in memory could never be equal. To
verify the safety of our silent store transforms in isolation, the
checker needs analyses that can determine that our transform
produces a blinding bitvector Z such that Z != X and Z != Y.

Our SS checker starts by using the same analyses as our
CS checker, first an interprocedural taint analysis and then the
abstract memory domain. Since the interval and abstract mem-
ory domain can express equality and inequality constraints,
they can help prune some stores that definitely do not leak.

After these analyses have pruned all instructions that they
can, we use a costlier relational analysis specific to our trans-
form approach: for each remaining instruction, we compile
this instruction, the N previous instructions in a backward
slice [29], and the checker’s safety specification to an SMT
formula for checking in Z3 [23]. We found that N = 40 BAP
IR instructions provides Z3 with enough context to verify the
safety of our SS transforms in isolation. We can also tune the
speed and precision of the analysis by changing N.

Although N = 40 might seem large, double-checking trans-
formed binaries remains tractable. In the transformed binary,
each store instruction not pruned by taint or abstract memory
is a store introduced by a transform, and the previous N = 40
instructions in the slice will also belong to the same trans-
form. This implies that if the checkers can tractably verify
the transforms in isolation, then they can tractably verify the
safety of the mitigated code.

However, during checking of the untransformed binary,
it is likely that any 40 instructions contain many non-linear
operations over wide bitvectors that are difficult for Z3 to
reason about. To prevent these sequences from dominating
the time to prune non-leaky instructions, we set a Z3 timeout
bound slightly higher than required for double-checking.

7 Verifying Mitigations and Their
Composition

We also formally verify properties of transforms while de-
signing them. While our checkers could also be used to verify
the safety of transforms, they are typically too coarse to also
verify semantic equivalence, so we use separate, additional
offline verification. This additional verification lets us verify
the safety and semantic equivalence of transform instruction
sequences without having to also co-design and implement
checkers to receive feedback on transform designs.

Our offline verifiers use Serval [45], a framework for de-
veloping automated systems software verifiers on top of the
Rosette solver-aided programming language [53]. Starting
from equivalent symbolic CPU states, these verifiers inter-
pret the original instruction and the transform, compiling
both to SMT formulas. A correct transform must preserve
the software-observable behavior of the program–this may
not be exact equivalence of the final symbolic CPU states
(Section 4.3). A safe transform should avoid leakage under
the specified optimizations; this requires an additional safety
specification that asserts the absence of leakage conditions as
the interpreter visits each instruction.

Offline verification can also be used to solve the composi-
tion safety problem: is there an order the compiler can apply
our transform passes that keeps our transforms safe and se-
mantically equivalent under a given set of optimizations?

To determine a safe pass ordering—or if one exists—one
can compute a dependency graph between transforms by
running the verifiers over all transforms for the selected opti-
mizations, along with each safety specification. Suppose this
process finds an instruction in a transform for optimization
A that leaks under optimization B.7 If there is a transform for
B such that the resulting composed transform is safe under
both A and B, then we add a dependency between transform
A and transform B. In this case, optimization B’s transform
pass must run after optimization A’s transform pass. If there
is no applicable such transform B, then there is no safe pass

7Note that A and B can be the same optimization, i.e., A = B.
9



ordering—the transform for A will leak under optimization
B. Repeating this process until a fixpoint, the resulting de-
pendency graph, if free of cycles, provides a safe order for
transform passes.

Using this approach, we find that our SS transform passes
must be run before our CS transform passes for the final
binary to be safe under both optimizations. Our 8-bit SS
transform in Figure 3b uses and and or instructions on un-
constrained register operands, and and and or instructions
can leak under CS (Table 1). In this case, we have a safe
pass ordering, but had our CS transforms used 8-bit stores to
scratch memory rather than using scratch registers, then there
would have been a cycle in the dependency graph and no safe
pass ordering.

8 Evaluation
cio affects both build time and execution time of the pro-
grams it hardens, varying both on the target program and
the specific mitigations enabled. In this section, we explore
three questions about the impact of our process for mitigating
instruction-centric side channels:

• How much overhead does cio add to the usual build
process? (Section 8.2)

• How effective are our checkers at pruning instructions
that definitely do not leak? (Section 8.3)

• What run-time penalties are imposed from mitigating
highly prevalent instruction-centric side channels? (Sec-
tion 8.4)

We evaluate cio and our transforms on libsodium [24].
Libsodium is a cryptographic library that provides crypto-
graphic primitives and high-level APIs for encryption, de-
cryption, signatures, password hashing, and other algorithms.
We configure libsodium with the --disable-asm flag (used
by WebAssembly targets) to force reference implementations
for most operations. These reference implementations do not
use hand optimized assembly (see Limitations Section 9.6).
Other than this flag, we build libsodium using its usual set of
compilation flags. We ensure the libsodium test suite passes
all tests on every version of libsodium we build.

All evaluation (compilation and run time) is performed
on our system with an Intel(R) Xeon(R) Gold 6312U CPU
(2.4GHz, microcode v0xd000375), 512GB of DDR4 (3200
MHz), and all storage on local SSDs. As we do not believe
any Intel CPUs implement our target CS or SS optimizations,
results in this section may underestimate run-time overheads
on systems that do implement the target optimizations. On
such systems, we would expect to see a lower baseline exe-
cution time due to those optimizations occuring at runtime.
This would have the effect of increasing cio’s overheads as a
ratio to the baseline.

8.1 Implementation
Our LLVM transform passes are written in 16,503 lines of
C++ code. The checkers consist of 10,293 lines of OCaml,
while our offline verifier consists of 5,343 lines of Racket.
cio itself is written in 474 lines of Bash.

8.2 Build Process Overhead
The wall-clock time for cio to mitigate libsodium against all
CS cases,8 SS, and SS and all CS cases is shown in Table 2.
We report the mean build times over 3 independent runs,
with 2% or less observed variation in build times. Builds are
executed with a single make job slot (-j 1) for both baseline
and cio builds.

Table 2 shows that SS checking takes longer than CS
checking, but CS double-checking takes much longer–nearly
25x more time–than SS double-checking. SS checking takes
longer than CS checking because the SS checker’s analyses
extend the CS checker’s analyses, and most Z3 solver calls
made by the SS checker will time-out over the large, nonlinear
bitwidth constraints in libsodium. Most of the difference in
double-checking time is explained by the much higher num-
ber of instructions added by CS transforms; CS transforms
are longer than SS transforms, and there are many more in-
structions needing CS transforms than SS transforms. Despite
transforms adding more instructions, SS’s double-checking
time stays small as most Z3 solver calls will not time out
when analyzing SS transforms.

Compile Check Mitigate Double-check

SS 388s 390s 381s 477s
CS 397s 265s 393s 11,836s

SS+CS 387s 391s 455s 13,293s
Table 2. cio build time breakdowns for libsodium reference
implementations with different mitigations applied. CS stands
for all CS optimizable cases of all instructions for all opera-
tions in Table 1. Each value is the mean of 3 single-job builds
of libsodium in seconds. ‘Compile’ is the initial required build
and also serves as a baseline for a libsodium build.

8.3 Checker Pruning Effectiveness
Table 3 shows the number of non-leaky instructions pruned
by each analysis of the SS and CS checkers. Note that the
final number of instructions transformed does not follow
from the table alone—i.e., Trans f ormed ≠ Total − Taint
Memory Domain Sym. Comp.. This is because we prune ad-
ditonal alerts for instructions that are spuriously flagged or
unsupported (Section 9.3) after running the checkers. These
spuriously flagged instructions are from BAP’s lifting—e.g.,

8All CS optimizable cases of all instructions used by libsodium’s reference
implementations covering any operation in Table 1.

10



lifting sub instructions to add instructions causes our check-
ers to wrongfully flag these instructions as both operands of
adds must be checked compared to only the left argument of
subs. If we were to first filter out these instructions before
running the checkers, the SS and CS checker still prune 323
and 6,159 instructions respectively.

Total
considered

Pruned by Trans-
formedTaint Memory

Domain
Sym.

Comp.

SS 2,695 1 428 23 1,879

CS 13,198 4,940 2,144 N/A 4,858
Table 3. Number of non-leaky instructions pruned by each
analysis of the SS and CS checkers. ‘Memory Domain’ is
the combined interval, memory, and trace partitioning do-
main (Section 5.4). Numbers for CS indicate pruning for all
optimization cases for all operations in Table 1. Since these
passes are ordered, later passes have fewer available sites to
prune.

8.4 Overhead of Transformed Code
To understand the overhead we impose, we measured the end-
to-end execution time and binary size impact for select subsets
of our CS and SS transforms on core cryptographic operations
in libsodium (Figure 4). Our baseline measurement is the run
time of libsodium compiled with unmodified clang with no
transforms applied. We also show the measured overhead of
libsodium compiled with scratch registers reserved and no
transforms applied.

Each primitive is run in an evaluation loop of 1000 itera-
tions (100 for argon2id), with 25 warmup iterations and
dropping outliers outside 1.5×interquartile range in post-
processing. Run time is measured using x86_64’s rdtsc and
rdtscp instructions. Reported overheads are then normalized
versus the mean run time of baseline libsodium.

We evaluate binary size impact by measuring the combined
size in bytes of the text sections of all compiled libsodium
object files. By this method, we measure binary sizes of 588
kB with SS transforms applied, 1,118 kB with CS transforms,
and 1,327 kB with both SS and CS, as compared to 363 kB
in non-mitigated libsodium.

9 Discussion
Overall, our transforms impose a high cost in both execution
time and double-checking the mitigated binary. This result is
unsurprising, given the massive instruction counts added by
our mitigations. We also note that in a development setting,
any build time costs would only be paid once, when cio is
run on the release build of a system.

9.1 Pruning Effectiveness
Compared to the SS checker, the CS checker prunes a higher
percentage of optimization-specific instructions. Many of the
taint-pruned instructions are operations on constants; stack
operations like push, pop, and lea; or instructions we do not
transform such as call or ret. The interval-pruned instruc-
tions are those, already present in libsodium, whose operands
are incidentally safe from CS optimizations. For example, in
ed25519, values are commonly bitmasked, setting or clearing
some bits, thereby removing some CS-unsafe values before
further operations occur on those values.

On the other hand, the SS checker is fast to check and
double-check libsodium, but does not prune many instruc-
tions. The 7 taint-pruned instructions are all stores of boolean
constants or function pointers to global variables. The 21
symbolic-pruned instructions are additions or subtractions of
a constant to a memory location, e.g., incrementing a stored
counter. It makes sense that a non-relational interval analysis
would not catch such instructions; incrementing a non-static
interval value yields a value that can always be equal to its
previous value, and adding a constant to the ⊤ interval is
again equal to the ⊤ interval. We do not expect that many of
the stores in libsodium are incidentally guaranteed to never
store a value equal to the value already stored in memory, so it
is not clear whether SS pruning numbers could be improved.

9.2 Run-Time Overheads
Figure 4 shows that despite pruning as many non-leaky in-
structions as possible, the overhead of transformed code can
be significant and varies widely depending on the optimiza-
tions a uarch implements, the structure of the targeted code,
and changes made by the compiler.

Consider preventing x86’s LEA instruction from being opti-
mizable on its scale multiplication or either of its additions.
Most LEA instructions in chacha20-poly1305 are inserted
for address calculation, but the structures of argon2id and
ed25519 are amenable to compiler optimizations where sev-
eral instructions are changed into a single LEA value computa-
tion. LEA transforms impose even more overhead if they need
to preserve conditional flags, and LLVM tends to schedule
such LEA instructions between sets and checks of conditional
flags.

On the other hand, vector ADD and MUL transform overhead
is less on argon2id compared to aesni256gcm. This is be-
cause the reference implementation of argon2id contains no
vector instructions at the source-code level, but aesni256gcm
is mostly vector operations. argon2id still has some over-
head from vector transforms as some potentially-leaky vector
instructions are added by compiler optimizations.

Our transform for 64-bit, 0- and 1-skip multiplication im-
poses a drastic 15.71x and 8.79x overhead on argon2id and
ed25519. 64-bit multiplication is highly prevalent in these
primitives, and the associated transform is composed of 116

11



argon2id ed25519 aesni256gcm chacha20-poly1305
Cryptographic function

0

5

10

15

20

25

30

No
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e 27

.8
4x

20
.3

2x

4.
03

x 8.
22

x

26
.0

8x

16
.7

3x

2.
72

x

7.
08

x

2.
97

x

3.
76

x

1.
98

x

1.
85

x

15
.7

1x

8.
79

x

0.
94

x

2.
31

x

3.
17

x

2.
24

x

1.
27

x

1.
11

x

1.
06

x

1.
18

x

1.
54

x

1.
06

x

8.
78

x

6.
51

x

1.
42

x

2.
67

x

1.
06

x

1.
05

x

0.
95

x 3.
37

x

1.
05

x

1.
03

x

0.
94

x

0.
98

x

Overhead of libsodium microbenchmarks
SS and CS
CS only (all categories)
SS only
CS for 64-bit multiplication
CS for LEA instructions
CS for vector instructions
CS for all other 64-bit instructions
CS for all other instructions (32-bit or less)
No transformations, but registers reserved

Figure 4. Normalized execution overhead of transformed libsodium code compared to the runtime of the non-transformed
code built normally. Bar color represents different combinations of mitigations: ‘CS for 64-bit multiplication’ only includes CS
transforms for 64-bit, 0- and 1-skip optimization on either operand. The overhead of scratch register reservation, without any
transformations applied, is also shown for reference. Reported values are means over 1000 runs (100 for argon2id) with 25
warmup runs, and values outside 1.5×interquartile range dropped. Only encryption overheads are shown for aesni256gcm and
chacha20-poly1305, as decrypt overheads are very similar.

instructions. Many of those instructions are guards against
optimizations for all other used instructions: for example, the
transform only uses left shifts in a non-0-skippable way. This
imposes some additional overhead in Figure 4, as transforms
for, e.g., ‘CS for 64-bit multiplication’ also pay overheads for
many other optimizations.

We anticipate that future systems may experience different
overheads when using cio and our mitigations. Such systems
will likely not optimize the exact set of opcodes for which
we have built transforms (Section 9.3), and details of specific
uarch features could allow defending against less strict threat
models, more pruning, and better-tailored transforms. Con-
versely, future systems may see even higher overheads, either
as a result of optimizing even more opcodes that must then
be transformed, or due to losing the run-time benefit of the
optimizations themselves.

9.3 Instruction Support
We apply our CS and SS transform approaches to instructions
flagged by our checkers on libsodium’s reference implementa-
tion build for x86_64. Of these flagged instructions, we make
a best effort to mitigate those that match proposed optimiza-
tions in the literature. This process is complicated because
prior work generally discusses CS in terms of optimizing
operations, e.g., addition or multiplication, rather than the
many possible matching instructions or opcodes.

In general, we chose not to support instructions for one of
three reasons:

1. We found no proposals for CS or SS optimizations
that would apply to that instruction or the operation it

implements. Examples: most vector operations except
addition, multiplication, or stores; double-length shifts
(SHLD, SHRD); rotation.

2. There are optimizations that apply to similar instruc-
tions or operations, but we judged that those optimiza-
tions were unlikely to benefit that specific instruction
or class of instructions. Example: we transform ADD but
not ADC (add with carry) due to the carry flag likely
not being available early enough in the pipeline for CS
optimization to be applied.

3. The instruction already is not constant-time, so there
is no need to preserve such a property under CS or SS.
Examples: DIV and IDIV [31].

9.4 Generalizing Beyond SS and CS
We believe that cio can be used to mitigate the remaining
instruction-centric optimizations described in Sanchez Vicarte
et al [51].

To mitigate leakage due to computation reuse [51], we
could construct a checking pass that identifies potentially
memoizable computations along paths. The transform pass
might change a flagged instruction into a sequence of instruc-
tions that compute the same value but without matching a
previous entry in a memoization table. Offline verification
(Section 7) of this transform differs from CS and SS’s offline
verification as the set of required transforms is dynamic and
dependent on the potentially memoizable computations in the
target program.

As another example, an instance of value prediction [51]
was recently discovered in Intel CPUs [46], in which 64-bit

12



division with a 128-bit dividend speculates that the upper 64
bits of the dividend are zero. We believe we could prevent this
optimization by using the split-and-recombine approach used
for computation simplification (Section 5.2). The transform
would split the division into multiple parts such that each
part always has zero in the upper bits of the dividend, then
recombine for the final quotient. Further, it appears that Intel’s
DOIT [6] bit may not cover this optimization.

cio can generally handle mitigations that require targeted
substitution or insertion of instructions, so we believe that
cio can also be used to mitigate leakage beyond instruction-
centric optimizations. To mitigate data-at-rest leakage, for
example, if we assume that secrets are never compiled into a
binary, an instruction-centric approach could transform each
store of potentially secret data into a store of data in a different
format that is not leakable under the given microarchitecture.
Offline verification can be used to verify that the alternate for-
matting of the data is always correctly computed, and double
checking would ensure that all secret data has been stored in
the alternate format. Compared to ‘purely’ instruction-centric
mitigation, this approach changes the ABI of the program and
would require additional mitigation or declassification at, e.g.,
library call boundaries.

9.5 Value-decay of software-only mitigation
Ideally, vendors will continue to address side channels early
in the design process and provide features (DIT [5], DOIT [6],
Zkt [4]) that allow software to better express the safety prop-
erties it needs to hardware. In that world, cio still works
well, since the only thing that would change is that our trans-
forms can switch to toggling the feature/mode bit. We would
still like to have the performance improvements of uarch
optimizations available as often as possible without leaking
information, so cio’s process of check, prune, transform, and
double-check will still be valuable.

It is also worth considering the long tail of hardware and
legacy systems that have interesting optimizations that are
not yet public, and do not have configuration options. As
the community discovers side channels on these systems,
software-only mitigations will continue to be valuable.

9.6 Limitations
Libsodium provides more performant, vectorized implemen-
tations for some cryptographic functions, such as the Sandy2x
implementation of ed25519 [20]. These implementations
can include inline assembly, which are separate, difficult-
to-handle constructs in LLVM MIR, or assembly files, which
are not accessible in compiler passes. As a result, we miti-
gate and evaluate on libsodium’s reference implementations,
which include neither inline assembly nor assembly files. Sup-
porting the more performant implementations would likely
require switching to a binary rewriter [61]. Unfortunately,
reserving our required registers would complicate this, and
would require a full re-translation of the binary.

While we outline a process for safely composing trans-
forms in Section 7, we manually combine SS transforms with
their dependent CS transforms in our LLVM MIR pass. For
example, the transform for the x86_64 opcode ADD64mr is
written to be both SS and CS safe, and thus we do not have
to compute pass orderings on the fly. Our checkers also do
not consider transient inputs to instructions, and may prune
instructions that can leak speculatively.

cio currently raises alerts while double-checking the safety
of the transformed binary, alerting on 43 out of 184,659 in-
structions in our transformed libsodium. These remaining
alerts are caused by known bugs in our analyzers and check-
ers that will be fixed soon.

10 Conclusion
While the outlook for novel microarchitectural leakage chan-
nels is somewhat dire, we have shown that compiler-based
software-only mitigation is possible. We have found that the
approach in cio can be applied to a variety of instruction-
centric optimizations, and the mitigated code can be verified
to be free of optimization-induced side channels. The costs
for these mitigations are predictably high, in compilation time
and execution time, but feasible for critical software.

Overall, this is fundamentally good news. If security re-
searchers discover a significant leakage channel in current pro-
cessors for an operation such as vector moves or basic arith-
metic, cio can verifiably mitigate a mainstream cryptographic
library immediately. The core challenge going forward is how
to adapt to optimization classes not yet considered by cio.
One promising direction is combining program synthesis tech-
niques with our generalized transform approaches. As such,
we encourage future security analyses for uarch optimiza-
tions to consider what generic transform approaches would
mitigate that optimization.

In an ideal setting, software computing on secrets could
configure and monitor hardware-backed constant-time con-
figuration bits. Unfortunately we cannot always rely on the
existing options (DIT and DOIT) as they do not cover all
processors (or even vendors), and it is unclear what classes
of optimizations will be covered in practice. Software-only
mitigation serves as a necessary, albeit expensive, backstop
that software like cryptographic libraries can rely on.

11 Acknowledgments
We thank the anonymous reviewers and our shepherd, Ashish
Venkat, for their helpful feedback. We also thank Ivan Go-
tovchits and Benjamin Mourad from BAP for their guidance
in building our analyzers and checkers, Zachary Tatlock and
Max Willsey for their thoughts on transform ordering and
synthesis, and Antoine Miné for answering questions about
the abstract memory domain used by the checkers. This work
was partially funded by NSF grants 2153388 and 2140004.

13



A Artifact Appendix
A.1 Abstract
This artifact contains our tooling for cio and scripts that re-
produce our evaluation results. Since tooling for cio spans
several different programming languages, libraries, and spe-
cific versions of tools, we recommend using our Docker image
to set up an environment for running cio and our evaluation
scripts. We provide additional instructions to set up our ar-
tifacts to reproduce the figures and tables in our evaluation
section.

A.2 Artifact check-list (meta-information)
• Algorithm: Binary analysis, build system, static analysis
• Program: cio—drives LLVM, Binary Analysis Platform

(BAP), libsodium; eval.sh—drives evaluation of cio
• Compilation: LLVM—included in Docker image
• Binary: Included in Docker image
• Run-time environment: Requires Docker; stack size in-

creased via ulimit -s 32768
• Hardware: Single core x86_64
• Metrics: Run time; binary size; number of instructions pruned

and transformed
• Output: Plot; text files containing data for tables. Compare

against paper to see expected results
• Experiments: Automated via eval.sh; see README for de-

tails: https://github.com/counter-optimization/cio-artifact/
README.md

• How much disk space required (approximately)?: 30GB
total for the Docker image tar file, the image itself, and its
outputs

• How much time is needed to prepare workflow (approxi-
mately)?: Once Docker image is downloaded, approximately
5 minutes

• How much time is needed to complete experiments (ap-
proximately)?: About 3 hours on a clean AWS instance with
32GB of memory; more depending on resources

• Publicly available?: Yes: https://github.com/counter-opt
imization/

• Code licenses?: BSD 3-Clause License
• Workflow framework used?: Bash script, autotools, Make-

file, Python
• Archived?: Yes: https://doi.org/10.5281/zenodo.10594315

A.3 Description
All artifacts are available through the Github organization
https://github.com/counter-optimization. cio and its evalu-
ation scripts are available at https://github.com/counter-opt
imization/cio. The repo https://github.com/counter-optimiz
ation/checker contains code for our checkers, analyzers, and
offline verification tools. https://github.com/counter-optim
ization/llvm-project contains our fork of LLVM with code
added for secret argument annotations, mitigation passes, and
scratch register reservation. The cio repo contains cio and
an evaluation script, eval.sh, that generates Figure 4’s plot
and data for the tables in the evaluation section.

A.3.1 How to access. All artifacts are available at https://
github.com/counter-optimization/. We provide a download-
able Docker image with all dependencies needed to run cio
and its evaluation scripts: https://homes.cs.washington.edu/
~aemichae/cio-asplos24aec.tar.gz. The raw Dockerfile and
accompanying README can be found at https://github.com/
counter-optimization/cio-artifact.

A.3.2 Hardware dependencies. cio requires an x86_64
machine as mitigations are currently only implemented for
x86_64. The downloadable Docker image is about 8.4GB.
Approximately 30GB of disk space is required for the combi-
nation of the downloadable image file, the image itself (once
loaded by Docker), and the evaluation outputs. We recom-
mend using a machine with around 32GB of memory.

Building the Docker image from the Dockerfile (as opposed
to downloading it directly) requires approximately 115 GB
of storage, due primarily to the size of LLVM, and can be
expected to take several hours at least, depending on available
resources. Therefore we strongly recommend downloading
the pre-built Docker image from https://homes.cs.washingto
n.edu/~aemichae/cio-asplos24aec.tar.gz.

A.3.3 Software dependencies. All software dependencies
are installed by the Docker image, which itself depends only
on Docker. The dependency list below is for reference only.

Our evaluation requires a Linux machine with the OCaml
base compiler v4.14.0, the Binary Analysis Platform (BAP)
v2.5.0, our fork of LLVM, and libsodium v1.0.18-RELEASE.
Our fork of LLVM is available at https://github.com/coun
ter-optimization/llvm-project. For installing OCaml pack-
ages, we used the OCaml package manager, opam, to in-
stall the ocaml-base-compiler.4.14.0, BAP v2.5.0, Z3 v4.11.2,
zarith v1.12, core v0.14.1, core_kernel v0.14.2, base v0.14.3,
ocamlgraph v2.0.0, memtrace v0.2.3, dolog v6.0.0, splay_tree
v0.14.0. The opam package providing Z3 bindings relies on
Z3 with the same version number: v4.11.2.

Our evaluation scripts additionally require python3, mat-
plotlib, and numpy.

A.4 Installation
We provide a Docker image that installs all required dependen-
cies. See the README at https://github.com/counter-optimiz
ation/cio-artifact for instructions on setting up the Docker
image.

For manual installation, all software dependencies need to
be installed and our fork of LLVM needs to be built follow-
ing the normal LLVM build process. After building our fork
of LLVM, running LLVM_HOME=/path/to/our/llvm/bins
make all in the cio repository will finish the installation of
cio and evaluation dependencies.

A.5 Basic Test
The command make test runs cio on a simple C program.
If run correctly, the basic test should display a log of running

14

https://github.com/counter-optimization/cio-artifact/README.md
https://github.com/counter-optimization/cio-artifact/README.md
https://github.com/counter-optimization/
https://github.com/counter-optimization/
https://doi.org/10.5281/zenodo.10594315
https://github.com/counter-optimization
https://github.com/counter-optimization/cio
https://github.com/counter-optimization/cio
https://github.com/counter-optimization/checker
https://github.com/counter-optimization/checker
https://github.com/counter-optimization/llvm-project
https://github.com/counter-optimization/llvm-project
https://github.com/counter-optimization/
https://github.com/counter-optimization/
https://homes.cs.washington.edu/~aemichae/cio-asplos24aec.tar.gz
https://homes.cs.washington.edu/~aemichae/cio-asplos24aec.tar.gz
https://github.com/counter-optimization/cio-artifact
https://github.com/counter-optimization/cio-artifact
https://homes.cs.washington.edu/~aemichae/cio-asplos24aec.tar.gz
https://homes.cs.washington.edu/~aemichae/cio-asplos24aec.tar.gz
https://github.com/counter-optimization/llvm-project
https://github.com/counter-optimization/llvm-project
https://github.com/counter-optimization/cio-artifact
https://github.com/counter-optimization/cio-artifact


cio on the test file and end with the output "1 + 1 = 2.
Done!". See the README for details.

A.6 Experiment workflow
The eval.sh script, found in the root of the artifact Github
repo, drives the evaluation process. The script builds, tests,
and collects evaluation data for libsodium:

1. using the normal build process with unmodified clang
2. with scratch registers reserved
3. with all CS mitigations applied
4. with five different subsets of CS mitigations applied
5. with all SS mitigations applied
6. with all CS and SS mitigations applied

After these different builds, the script generates the plot
for Figure 4 and outputs text to fill in the other tables in the
Evaluation section.

By default, the eval.sh script does not run the double-
checking phase (Section 4.4). To run full experiments with the
double-checking phase, remove the –skip-double-check
flag on line 168 of the Makefile. Be aware that enabling
double-checking will cause the evaluation run to take roughly
twice as long to complete (>6-8 hours).

A.7 Evaluation and expected results
A successful run of eval.sh will produce a figure, some ta-
bles, and some textual data on the command line. The files that
eval.sh generates will be in a timestamped directory with
suffix -eval; this directory will be referred to as BUILD_DIR
and symbolically linked from latest-eval-dir.

Results for mitigation overhead (Figure 4) will be in the
benchmarks subdirectory of BUILD_DIR, with the plot at
microbench-overheads.pdf. Pruning numbers (Table 3)
and compilation time/overhead numbers (Table 2) will be
printed to stdout after eval.sh runs and should match the
numbers in the paper’s table exactly.

References
[1] Introducing 2017’s extensions to the Arm Architecture, 2017.

URL https://web.archive.org/web/20171107164628/https://
community.arm.com/processors/b/blog/posts/introducing-2017s-e
xtensions-to-the-arm-architecture.

[2] Chromium: Cross-origin pixel reading and history sniffing via svg filter
timing attack, 2017. URL https://bugs.chromium.org/p/chromium/
issues/detail?id=686253.

[3] Speculative store bypass cve-2018-3639 intel-sa-00115, 2018.
URL https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/advisory-guidance/
speculative-store-bypass.html.

[4] RISC-V Cryptography Extensions Volume I Scalar & Entropy Source
Instructions, 2022. URL https://github.com/riscv/riscv-crypto/releas
es/tag/v1.0.1-scalar.

[5] ARM Developer documentation - DIT, Data Independent Timing, 2023.
URL https://developer.arm.com/documentation/ddi0601/2023-03/AA
rch64-Registers/DIT--Data-Independent-Timing?lang=en.

[6] Intel Data Operand Independent Timing Instruction Set Architecture
(ISA) Guidance, 2023. URL https://www.intel.com/content/www/us/

en/developer/articles/technical/software-security-guidance/best-p
ractices/data-operand-independent-timing-isa-guidance.html.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-
pressoir, and Michael Emmi. Verifying constant-time implementations.
In Thorsten Holz and Stefan Savage, editors, Proceedings of USENIX
Security 2016, pages 53–70. USENIX, August 2016.

[8] Amazon. Constant time verification tests for s2n. URL https://github
.com/aws/s2n-tls/tree/main/tests/sidetrail.

[9] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In Lujo Bauer and Vitaly Shmatikov, editors, Proceed-
ings of IEEE Security and Privacy (“Oakland”) 2015. IEEE Computer
Society, May 2015.

[10] E. Atoofian and A. Baniasadi. Improving energy-efficiency by by-
passing trivial computations. In 19th IEEE International Parallel
and Distributed Processing Symposium, pages 7 pp.–, 2005. doi:
10.1109/IPDPS.2005.253.

[11] Jean-Philippe Aumasson. Cryptocoding. URL https://github.com/
veorq/cryptocoding.

[12] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses
in x86 executables. In Compiler Construction: 13th International
Conference, CC 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain,
March 29-April 2, 2004. Proceedings 13, pages 5–23. Springer, 2004.

[13] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos,
Kevin Liao, Tiago Oliveira, Swarn Priya, Tamara Rezk, and Peter
Schwabe. High-assurance cryptography in the spectre era. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1884–1901,
2021. doi: 10.1109/SP40001.2021.00046.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7,
aug 2011. ISSN 0163-5964. doi: 10.1145/2024716.2024718. URL
https://doi.org/10.1145/2024716.2024718.

[15] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cris-
tiano Giuffrida. Constantine: Automatic side-channel resistance using
efficient control and data flow linearization. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
pages 715–733, 2021.

[16] Braun, M. 2017 LLVM Developers’ Meeting: M. Braun "Welcome
to the back-end: The LLVM machine representation". URL https://
www.youtube.com/watch?v=objxlZg01D0&ab_channel=LLVM.

[17] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J
Schwartz. Bap: A binary analysis platform. In Computer Aided Verifi-
cation: 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings 23, pages 463–469. Springer, 2011.

[18] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM,
2019.

[19] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,
Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit
Jhala, and Deian Stefan. Fact: A dsl for timing-sensitive computation. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 174–189, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450367127. doi: 10.1145/3314221.3314605. URL https://doi.org/
10.1145/3314221.3314605.

[20] Tung Chou. Sandy2x: New curve25519 speed records. In Interna-
tional Conference on Selected Areas in Cryptography, pages 145–160.

15

https://web.archive.org/web/20171107164628/https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://web.archive.org/web/20171107164628/https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://web.archive.org/web/20171107164628/https://community.arm.com/processors/b/blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://bugs.chromium.org/p/chromium/issues/detail?id=686253
https://bugs.chromium.org/p/chromium/issues/detail?id=686253
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://developer.arm.com/documentation/ddi0601/2023-03/AArch64-Registers/DIT--Data-Independent-Timing?lang=en
https://developer.arm.com/documentation/ddi0601/2023-03/AArch64-Registers/DIT--Data-Independent-Timing?lang=en
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://github.com/aws/s2n-tls/tree/main/tests/sidetrail
https://github.com/aws/s2n-tls/tree/main/tests/sidetrail
https://github.com/veorq/cryptocoding
https://github.com/veorq/cryptocoding
https://doi.org/10.1145/2024716.2024718
https://www.youtube.com/watch?v=objxlZg01D0&ab_channel=LLVM
https://www.youtube.com/watch?v=objxlZg01D0&ab_channel=LLVM
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3314221.3314605


Springer, 2015.
[21] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De

Sutter. Practical mitigations for timing-based side-channel attacks on
modern x86 processors. In S&P, 2009.

[22] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL
’77, page 238–252, New York, NY, USA, 1977. Association for Comput-
ing Machinery. ISBN 9781450373500. doi: 10.1145/512950.512973.
URL https://doi.org/10.1145/512950.512973.

[23] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems:
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14,
pages 337–340. Springer, 2008.

[24] Frank Denis. The sodium cryptography library, Jun 2013. URL https://
download.libsodium.org/doc/.

[25] Sushant Dinesh, Grant Garrett-Grossman, and Christopher W Fletcher.
Synthct: Towards portable constant-time code. In ndss, 2022.

[26] Brendan Dolan-Gavitt. Someone’s been messing with my subnormals!,
2022. URL https://moyix.blogspot.com/2022/09/someones-been-mes
sing-with-my-subnormals.html.

[27] Zhangxiaowen Gong, Houxiang Ji, Christopher W. Fletcher, Christo-
pher J. Hughes, Sara Baghsorkhi, and Josep Torrellas. SAVE: Sparsity-
Aware Vector Engine for Accelerating DNN Training and Inference
on CPUs. In 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 796–810, 2020. doi:
10.1109/MICRO50266.2020.00070.

[28] Dave Hansen. Linux kernel mailing list on doit patches. URL
https://lore.kernel.org/lkml/c5809098-9066-d90d-1bcc-108a11525c
ac@intel.com/.

[29] Mark Harman and Robert Hierons. An overview of program slicing.
software focus, 2(3):85–92, 2001.

[30] Intel. Data Dependent Prefetcher, 2022. URL https://
www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
data-dependent-prefetcher.html.

[31] Intel. Data operand independent timing instructions, 2023.
URL https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/resources/
data-operand-independent-timing-instructions.html.

[32] Md. Mafijul Islam and Per Stenstrom. Reduction of energy consump-
tion in processors by early detection and bypassing of trivial oper-
ations. In 2006 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, pages 28–34, 2006.
doi: 10.1109/ICSAMOS.2006.300805.

[33] Md. Mafijul Islam and Per Stenstrom. Energy and performance trade-
offs between instruction reuse and trivial computations for embedded
applications. In 2007 International Symposium on Industrial Embedded
Systems, pages 86–93, 2007. doi: 10.1109/SIES.2007.4297321.

[34] Ilhyun Kim and M.H. Lipasti. Implementing optimizations at de-
code time. In Proceedings 29th Annual International Symposium
on Computer Architecture, pages 221–232, 2002. doi: 10.1109/
ISCA.2002.1003580.

[35] Soontae Kim. Reducing alu and register file energy by dynamic zero
detection. In 2007 IEEE International Performance, Computing, and
Communications Conference, pages 365–371, 2007. doi: 10.1109/
PCCC.2007.358915.

[36] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In S&P, 2019.

[37] David Kohlbrenner and Hovav Shacham. On the effectiveness of
mitigations against floating-point timing channels. In USENIX Security
Symposium, pages 69–81, 2017.

[38] Matthew Kolosick, Basavesh Ammanaghatta Shivakumar, Sunjay
Cauligi, Marco Patrignani, Marco Vassena, Ranjit Jhala, and Deian
Stefan. Robust constant-time cryptography. POPL ’23, 2023.

[39] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong
program analysis & transformation. In International Symposium on
Code Generation and Optimization, 2004. CGO 2004., pages 75–86,
2004. doi: 10.1109/CGO.2004.1281665.

[40] K.M. Lepak and M.H. Lipasti. Silent stores for free. In Pro-
ceedings 33rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture. MICRO-33 2000, pages 22–31, 2000. doi: 10.1109/
MICRO.2000.898055.

[41] K.M. Lepak and M.H. Lipasti. On the value locality of store instruc-
tions. In Proceedings of 27th International Symposium on Computer
Architecture (IEEE Cat. No.RS00201), pages 182–191, 2000. doi:
10.1145/339647.339678.

[42] LLVM developers. Machine ir (mir) format reference manual. https://
llvm.org/docs/MIRLangRef.html.

[43] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract
interpretation based static analyzers. In Programming Languages and
Systems: 14th European Symposium on Programming, ESOP 2005,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005. Proceedings
14, pages 5–20. Springer, 2005.

[44] Antoine Miné. Field-Sensitive Value Analysis of Embedded C Pro-
grams with Union Types and Pointer Arithmetics. In Proceedings of
the 2006 ACM SIGPLAN/SIGBED Conference on Language, Com-
pilers, and Tool Support for Embedded Systems, LCTES ’06, page
54–63, New York, NY, USA, 2006. Association for Computing Ma-
chinery. ISBN 159593362X. doi: 10.1145/1134650.1134659. URL
https://doi.org/10.1145/1134650.1134659.

[45] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Em-
ina Torlak, and Xi Wang. Scaling symbolic evaluation for automated
verification of systems code with serval. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP ’19, page
225–242, New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450368735. doi: 10.1145/3341301.3359641. URL
https://doi.org/10.1145/3341301.3359641.

[46] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silber-
stein. Hide and seek with spectres: Efficient discovery of speculative
information leaks with random testing, 2023.

[47] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of aes. In CT-RSA’06, 2006.

[48] Thomas Pornin. Cttk: Constant-time toolkit. URL https://github.com/
pornin/CTTK.

[49] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice
implementation of aes. In Cryptology and Network Security, 2006.

[50] S.E. Richardson. Exploiting trivial and redundant computation. In
Proceedings of IEEE 11th Symposium on Computer Arithmetic, pages
220–227, 1993. doi: 10.1109/ARITH.1993.378089.

[51] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak,
Caroline Trippel, Adam Morrison, David Kohlbrenner, and Christo-
pher W. Fletcher. Opening pandora’s box: A systematic study of new
ways microarchitecture can leak private data. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA),
pages 347–360, 2021. doi: 10.1109/ISCA52012.2021.00035.

[52] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong,
and Junbeom Hur. Unveiling hardware-based data prefetcher, a hid-
den source of information leakage. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’18, page 131–145, New York, NY, USA, 2018. Association for Comput-
ing Machinery. ISBN 9781450356930. doi: 10.1145/3243734.3243736.

16

https://doi.org/10.1145/512950.512973
https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
https://moyix.blogspot.com/2022/09/someones-been-messing-with-my-subnormals.html
https://moyix.blogspot.com/2022/09/someones-been-messing-with-my-subnormals.html
https://lore.kernel.org/lkml/c5809098-9066-d90d-1bcc-108a11525cac@intel.com/
https://lore.kernel.org/lkml/c5809098-9066-d90d-1bcc-108a11525cac@intel.com/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/data-operand-independent-timing-instructions.html
https://llvm.org/docs/MIRLangRef.html
https://llvm.org/docs/MIRLangRef.html
https://doi.org/10.1145/1134650.1134659
https://doi.org/10.1145/3341301.3359641
https://github.com/pornin/CTTK
https://github.com/pornin/CTTK


URL https://doi.org/10.1145/3243734.3243736.
[53] Emina Torlak and Rastislav Bodik. Growing solver-aided languages

with rosette. In Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Soft-
ware, Onward! 2013, page 135–152, New York, NY, USA, 2013. Asso-
ciation for Computing Machinery. ISBN 9781450324724. doi: 10.1145/
2509578.2509586. URL https://doi.org/10.1145/2509578.2509586.

[54] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution. In USENIX
Security, 2018.

[55] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: Rogue in-flight data load. In S&P, May 2019.

[56] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian
Stefan. Automatically eliminating speculative leaks from cryptographic
code with blade. Proc. ACM Program. Lang., 5(POPL), jan 2021. doi:
10.1145/3434330. URL https://doi.org/10.1145/3434330.

[57] Ashwin Prasad Shivarpatna Venkatesh, Aditya Bhat Handadi, and Mar-
tin Mory. Security implications of compiler optimizations on cryptog-
raphy - A review. CoRR, abs/1907.02530, 2019. URL http://arxiv.org/
abs/1907.02530.

[58] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella,
Grant Garrett-Grossman, Adam Morrison, Christopher W. Fletcher, and
David Kohlbrenner. Augury: Using data memory-dependent prefetchers
to leak data at rest. In IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2022.

[59] Andrew Waterman and Krste Asanovic’. The risc-v instruction set
manual, volume i: User-level isa, document version 20191213. 2019.
URL https://github.com/riscv/riscv-isa-manual/releases/download/
Ratified-IMAFDQC/riscv-spec-20191213.pdf.

[60] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian
Stefan. Ct-wasm: type-driven secure cryptography for the web ecosys-
tem. Proceedings of the ACM on Programming Languages, 3(POPL):
1–29, 2019.

[61] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar
Weippl. From hack to elaborate technique—a survey on binary rewrit-
ing. ACM Computing Surveys (CSUR), 52(3):1–37, 2019.

[62] Johannes Wikner and Kaveh Razavi. {RETBLEED}: Arbitrary specu-
lative code execution with return instructions. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3825–3842, 2022.

[63] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Elimi-
nating timing side-channel leaks using program repair. In Proceedings
of the 27th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, pages 15–26, 2018.

[64] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack Directories, Not
Caches: Side Channel Attacks in a Non-Inclusive World. In IEEE S&P,
2019.

[65] J.J. Yi and D.J. Lilja. Improving processor performance by simplifying
and bypassing trivial computations. In Proceedings. IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
pages 462–465, 2002. doi: 10.1109/ICCD.2002.1106814.

[66] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter
Schwabe, and Yuval Yarom. Ultimate slh: Taking speculative load
hardening to the next level. In USENIX Security, 2023.

17

https://doi.org/10.1145/3243734.3243736
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/3434330
http://arxiv.org/abs/1907.02530
http://arxiv.org/abs/1907.02530
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Tools for Constant-Time Code
	2.2 Hardware Configuration for Side-channel Mitigation
	2.3 Hardware Support for Constant-Time Instructions

	3 Threat Model
	4 Design of cio
	4.1 Step 1: Compilation
	4.2 Step 2: Checking
	4.3 Step 3: Mitigation
	4.4 Step 4: Double-Checking
	4.5 Building Mitigations in cio

	5 Case Study: Computation Simplification
	5.1 Arithmetic Transforms
	5.2 Split-and-Recombine
	5.3 Conditional Move
	5.4 Checker

	6 Case Study: Silent Stores
	6.1 Transforms
	6.2 Checker

	7 Verifying Mitigations and Their Composition
	8 Evaluation
	8.1 Implementation
	8.2 Build Process Overhead
	8.3 Checker Pruning Effectiveness
	8.4 Overhead of Transformed Code

	9 Discussion
	9.1 Pruning Effectiveness
	9.2 Run-Time Overheads
	9.3 Instruction Support
	9.4 Generalizing Beyond SS and CS
	9.5 Value-decay of software-only mitigation
	9.6 Limitations

	10 Conclusion
	11 Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Basic Test
	A.6 Experiment workflow
	A.7 Evaluation and expected results

	References

