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Abstract—We present three techniques for extracting en-
tropy during boot on embedded devices.

Our first technique times the execution of code blocks early
in the Linux kernel boot process. It is simple to implement and
has a negligible runtime overhead, but, on many of the devices
we test, gathers hundreds of bits of entropy.

Our second and third techniques, which run in the boot-
loader, use hardware features — DRAM decay behavior and
PLL locking latency, respectively — and are therefore less
portable and less generally applicable, but their behavior is
easier to explain based on physically unpredictable processes.

We implement and measure the effectiveness of our tech-
niques on ARM-, MIPS-, and AVR32-based systems-on-a-chip
from a variety of vendors.

I. INTRODUCTION

Random numbers unpredictable by an adversary are cru-
cial to many computing tasks. But computers are designed to
be deterministic, which makes it difficult to generate random
numbers. Substantial effort has gone into developing and
deploying subsystems that gather and condition entropy, and
that use it to generate random numbers on demand.

In this paper, we take an extreme position: Randomness
is a fundamental system service; a system cannot be said to
have successfully booted unless it is ready to provide high-
entropy randomness to applications.

Our main contributions are three techniques for gathering
entropy early in the boot process — before interrupts are
enabled, before a second kernel thread is spawned. Our
techniques are suitable for use even on embedded sys-
tems, where entropy-gathering is more challenging than on
desktop PCs. We implement our proposed techniques and
assess their effectiveness on systems-on-a-chip (SoCs) that
integrate ARM, MIPS, and even AVR32 CPU cores.

Motivation: Our work is inspired by the recent paper of
Heninger, Durumeric, Wustrow, and Halderman [16], which
uncovered serious flaws in the design and implementation of
the Linux kernel’s randomness subsystem. This subsystem
exposes a blocking interface (/dev/random) and a non-
blocking interface (/dev/urandom); in practice, nearly
all software uses the nonblocking interface. Heninger et al.
observe (1) that entropy gathered by the system is not made
available to the nonblocking interface until Linux estimates
that 192 bits of entropy have been gathered, and (2) that
Linux is unnecessarily conservative in estimating the entropy
in events, and in particular that on embedded systems no

observed events are credited with entropy. These two facts
combine to create a “boot-time entropy hole,” during which
the output of /dev/urandom is predictable.

The Linux maintainers overhauled the randomness sub-
system in response to Heninger et al.’s paper. The timing
of every IRQ is now an entropy source, not just IRQs for
hard disks, keyboards, and mice. Entropy is first applied to
the nonblocking pool, in the hope of supplying randomness
to clients soon after boot. (Clients waiting on the blocking
interface can block a bit longer.)

The new design leaves in place the race condition between
entropy accumulation and the reading of supposedly random
bytes from the nonblocking pool. It would be better, we
argue, to gather entropy so early in the boot process that all
requests for randomness can be satisfied.

In this paper, we present entropy-gathering techniques
that realize this vision. We show how to gather entropy
in the bootloader or early in the kernel boot process on
embedded systems running a variety of popular processors.
Our techniques require neither the multicore x86 processor
of desktop PCs nor the sophisticated sensors available to
smartphones. They do not require network connectivity.
They can be used in place of, or side by side with, Linux’s
current entropy-gathering infrastructure.

Our three techniques provide different tradeoffs along
three metrics: (1) How many random bits can be obtained,
and how quickly? (2) How much system-specific knowledge
is required to implement the technique? (3) To what extent
can the entropy obtained be explained by well-studied phys-
ical processes that are believed to be unpredictable? None
of our proposed techniques is ideal along all three metrics.

Our first technique: Instruction timing early in kernel
boot: In our first technique, we instrument the kernel’s
startup code to record how long each block of code takes
to execute. This approach has previously been used to
gather entropy in userland code; we show that it is also
applicable when a single kernel thread of execution runs,
with interrupts disabled, on an embedded system. On many
of the devices we tested (see Section II), this technique
gathers a surprisingly large amount of entropy — over 200
bits on the Raspberry Pi, for example — at negligible runtime
overhead; on other devices, less entropy is available.

We have not been able to account conclusively for the
large amount of entropy this technique gathers on some



devices or for the smaller amount it gathers on other
devices. In Section III, we pinpoint architectural features
that are partly responsible.

Our second and third techniques: DRAM decay and
PLL locking: In our second class of techniques, we take
advantage of architectural features that vary between SoCs,
rendering them less portable and less widely applicable, but
promising more entropy. In addition, we are able to pinpoint
more precisely the sources of the entropy we measure.

In Section IV, we show that it is possible for bootloader
code, running from on-chip SRAM, to turn off DRAM
refresh. With refresh disabled, the contents of DRAM decay
unpredictably; we exploit this fact to obtain an entropy
source. In Section V, we show that our ability to repeatedly
reconfigure a peripheral clock on the BeagleBoard xM
translates into another high-rate entropy source.

A. Related Work

As noted above, the motivation for our paper is Heninger
et al.’s recent study of the Linux randomness subsystem [16].

Random number generation is hard, and flaws in ran-
domness subsystems have been identified with dismaying
regularity. In 1996, Goldberg and Wagner analyzed the
random number generator in the Netscape browser [10]. A
decade later, Luciano Bello found that the OpenSSL package
shipped with Debian and Ubuntu had a broken random
number generator [37]. The bug’s effects were quantified by
Yilek et al. [41]. Cryptographers have designed “hedged”
cryptosystems whose security degrades as little as possible
in the absence of good randomness [2]. Otherwise secure
random number generators can break in novel settings: Ris-
tenpart and Yilek observed that virtual machine resets could
lead to randomness reuse and proposed solutions [31, 40].

Researchers have expended considerable effort consider-
ing how best to design randomness subsystems. Gutmann
described design principles for random number genera-
tors [11]; Kelsey, Schneier, Wagner, and Hall proposed
a formal security model for random number generators
and described attacks on deployed systems [23]. Kelsey,
Schneier, and Ferguson then proposed Yarrow, a concrete
design for a family of random number generators [24]. More
recently, NIST has made recommendations for producing
random numbers from an entropy pool [1]. Researchers have
also studied the effectiveness of the randomness subsystems
deployed with Linux [12, 26] and Windows [7]. Gutterman,
Pinkas, and Reinman, in their study of Linux randomness
system [12] specifically pointed out the vulnerability of
Linux-based routers like those running OpenWRT software.

Entropy can be obtained from many sources: from ded-
icated hardware, using analog feedback circuits such as
phase-locked loops (PLLs) [9] or digital feedback circuits
(as included in Intel’s latest processors [4, 14]); from timing
other hardware devices, such as hard disks [6, 20]; from

timing user input; or, in sensor-rich devices such as smart-
phones, from sensor noise in microphones [8, Section 5.3.1],
cameras [3], and accelerometers [38].

Instruction timings have long been used as a source
of entropy. In Section II-A we describe Bernstein’s
dnscache-conf program from 2000. The method was
explored in detail in the HAVEGE system of Seznec and
Sendrier [33]. In both cases, the entropy is assumed to
derive from the unpredictable arrival times of interrupts and
the behavior of the system scheduler. By contrast, our first
technique (described in Section II) obtains entropy even
with interrupts disabled and a single thread of execution.

Pyo, Pae, and Lee, in a short note, observe that DRAM
refresh timings are unpredictable, which means that DRAM
access timings can be used as an entropy source [30].

Theoretical grounding for the unpredictability of instruc-
tion timing was given by McGuire, Okech and Zhou [27] and
Mytkowicz, Diwan, and Bradley [28]. These papers consider
x86 chips; the processors we study are considerably simpler.

Decay patterns in RAM, used in our second technique
(described in Section IV), have also been considered before.
Holcomb, Burleson, and Fu use SRAM decay as an entropy
source on RFID devices [18]. Halderman et al. studied
DRAM decay patterns in detail [13].

II. EARLY KERNEL ENTROPY

Our first method for gathering entropy is an application
of a simple idea: After each unit of work in a code module,
record the current time using a high-resolution clock. Specif-
ically, we instrument start_kernel, the first C function
run in the Linux kernel on boot, and use the cycle counter
as our clock.

Our approach is attractive. It runs as early as possible in
the kernel boot process: All but one use of randomness in the
Linux kernel occurs after start_kernel has completed.
It imposes almost no performance penalty, requiring, in our
prototype implementation, 3 KiB of kernel memory and exe-
cuting a few hundred assembly instructions. It is simple, self-
contained, and easily ported to new architectures and SoCs.

The question is, Does it work? Previous applications of
the same idea ran in user mode on general-purpose x86
machines. They could take advantage of the complexity
of the x86, the unpredictable arrival timing of interrupts,
interleaved execution of other tasks, and the overhead of
system call servicing when accessing a high-resolution
clock. By contrast, our code runs on an embedded device
with interrupts disabled and a single thread of execution.
Nevertheless, we are able to extract a surprising amount of
entropy — in some cases, hundreds of bits.

In this section, we discuss our implementation and
evaluate its effectiveness on ARM SoCs from six vendors, a
MIPS SoC, and an AVR32 SoC. In Section III, we discuss
architectural mechanisms that are partly responsible for the
entropy we observe.



A. Genesis

In 2000, Daniel J. Bernstein released dnscache 1.00,
a caching DNS recursive resolver that is now part of the
djbdns package. DNS resolvers generally operate over
UDP, which means that an interested attacker can spoof the
answer to a query by simply forging a packet. To combat
this, each DNS query carries along with it a pre–selected
port number and query ID, which the response must have to
be considered valid. Therefore, dnscache, when acting as
a client of other DNS servers, must be able to choose these
port numbers and query IDs well [19, 22].

One of dnscache-conf’s duties is to provide en-
tropy that will later be used by dnscache. To gather
this entropy, the dnscache-conf utility simply instru-
ments its own startup procedure with multiple calls to
gettimeofday(), and mixes each result into the entropy
pool. Due to the cost of each syscall, unpredictable hardware
interrupts, OS process scheduling, clock skew, and a host of
other factors, this method provides dnscache-conf with
high-quality entropy for the cost of a few extra syscalls. An
excerpt from dnscache-conf.c:

makedir("log");
seed_addtime();
perm(02755);
seed_addtime();
makedir("log/main");
seed_addtime();
owner(pw->pw_uid,pw->pw_gid);
seed_addtime();
perm(02755);
seed_addtime();

A method which works in userland on an x86 machine
might not apply to kernel-level code on much simpler
embedded devices. Indeed, we were initially skeptical: In
the absence of interrupts, multiple threads, syscall overhead,
and on simpler processors than the x86, would there still be
enough variation to make such a scheme viable?

B. Methodology

1) Kernel Instrumentation: To collect information about
the kernel boot process, we modified a Linux kernel for each
system we examined. Our kernel instrumentation consists of
a basic macro that can be inserted anywhere in kernel boot to
record the current cycle count with low overhead. The macro
recorded the current cycle count to an incrementing index
in a statically allocated array. We incremented the index at
compile time, and thus the only operations performed by the
measurement at run time are reading the cycle counter and
a single memory store.

We inserted the macro between every function call in
start_kernel, the first C function called during kernel
boot. The majority of the code executed during this sequence

is straight-line, with a varying number of instructions ex-
ecuted during each function call. We chose this sampling
method because it offered the simplest patch to the kernel
at the earliest point in the boot process. Our instrumentation
then printed the measured times to the kernel log. An init
script copied out the relevant data from the log, truncated the
log, and immediately restarted the system using reboot.
Temperature data was not collected. In this manner, we
gathered data on thousands of restarts per day per machine
with minimal interaction. Machines were switched off and
the data pulled after 24–48 hours of continuous rebooting
and data collection.

To estimate the performance overhead, we implemented
a “production-ready” version, which skips printing to the
kernel log in lieu of mixing the results directly into the
kernel’s randomness pools. We then used the cycle counter to
measure the execution time of start_kernel, both with
and without our instrumentation. On the Raspberry Pi (de-
tailed in Section II-C3), our technique adds approximately
0.00019 seconds to the kernel boot process.

2) Devices: As described in the previous section, we
instrumented a variety of Linux kernels and ran them on
a broad variety of embedded platforms, ranging from high-
powered ARM computers to low-end special-purpose MIPS
and AVR devices.

ARM: ARM, Inc. licenses its processor architecture to
many companies that integrate ARM cores into their designs.
Two systems-on-a-chip that integrate the same ARM core
might nevertheless have very different performance charac-
teristics. To check the general applicability of our approach
to ARM-based embedded systems, we instrumented and col-
lected data from systems-on-a-chip from many of the most
prominent ARM licensees: Broadcom, Marvell, NVIDIA,
Texas Instruments, Qualcomm, and Samsung. These vendors
represent six of the top seven suppliers of smartphone
processors by revenue.

Specifically, the first system we tested was the Raspberry
Pi, which contains a Broadcom BCM2835 SoC featuring a
1176JZF-S core, which is an ARM11 core implementing the
ARMv6 architecture. We also instrumented the BeagleBoard
xM, which uses a Texas Instruments DM3730 containing a
ARMv7 Cortex-A8; the Trim-Slice featuring an NVIDIA
Tegra 2, a ARMv7 Cortex-A9; the Intrinsyc DragonBoard,
with a Qualcomm SnapDragon SoC containing a Qual-
comm Krait ARMv7; the FriendlyARM Mini6410 with a
Samsung S3C6410, another version of the ARM1176JZF-S
ARM11 ARMv6 core; and the Cubox, which uses a Marvell
ARMADA 510 SoC containing a Sheeva ARMv7 core.

MIPS: Previous work on embedded device entropy
identified routers as important targets, as they are con-
veniently located to inspect and modify network traffic
and, as reported by Heninger et al. [16], routinely ship
with extremely poor entropy, as evidenced by their SSL
certificates.



With this in mind, we instrumented the early Linux boot
process on the Linksys WRT54GL router, containing a
Broadcom 5352EKPBG 200MHz MIPS “router-on-a-chip.”
Revered for their extensibility, the WRT54GL represents a
basic wireless router as found in the homes of millions.

AVR32: Finally, we instrumented a kernel for the Atmel
NGW100 mkII, which contains a AT32AP7000-U AVR32
core. The AVR32, designed by Atmel, represents one of the
smallest and lowest-power CPUs capable of running Linux.
Even on the AVR32, our techniques uncover substantial
randomness. The existence of instruction entropy on this
platform indicates that execution randomness is not solely
due to processor optimizations and complexity.

C. Results and Analysis

In this section, we will discuss the results of each device’s
kernel instrumentation, and the expected quality of the
entropy extracted.

As the existence of true randomness is an open philosoph-
ical question (and therefore beyond the scope of this paper),
we will treat entropy as “unpredictability”: given the knowl-
edge that a remote attacker can possibly have, how difficult
would it be to guess the device–generated random bits?

1) Statistical Tests: We are unable to conclusively pin-
point and characterize every source of entropy in these
systems. Therefore, this analysis will deal only with empir-
ical measurements, as sampled from each board over many
boots. We will rely mainly on two estimations: distribution
entropy and min-entropy.

Distribution entropy represents, for a given empirical
sample, the Shannon entropy of the underlying distribution.
For example, a set of samples consisting of 50 A’s and 50
B’s would have a single bit of distribution entropy, while
a set of samples consisting of 1024 unique values has a
distribution entropy of 10 bits. Distribution entropy can be
calculated, for a set S of n distinct observed values Vi, each
being seen Ci times, with C = |S|= ∑

n
i=0(Ci), as:

D(S) =−
n

∑
i=1

Ci

C
· lg

(Ci

C

)
(1)

Note that distribution entropy will almost always underes-
timate the entropy of the underlying distribution. That is, the
distribution entropy calculated from a empirical sampling S
will always be less than or equal to lg(|S|), regardless of
the actual entropy of the underlying distribution.

Our other empirical estimator, min-entropy, measures the
prevalence of the most common element in a distribution. In
other words, if an adversary is allowed a single guess at the
value, min-entropy measures how often she will be correct.
For a set S of n distinct observed values Vi with counts Ci,
the min-entropy is:

M(S) =− lg
(maxi(Ci)

C

)
(2)

With these two metrics, we can characterize the distribu-
tions sampled from each device and predict their real-world
entropy content.

2) Entropy Extraction: Furthermore, each boot sequence
generates a vector of test times, one per test. In our analysis,
we will examine both the sampled distributions of individual
test times, as well as the sampled distribution of test vectors.
The test vector, once generated, can be fed into an entropy
extractor to produce an evenly–distributed random seed,
which can then used to seed kernel pseudo-random number
generators.

The values in the test vector are partly correlated: if noth-
ing else, later tests have cycle counts larger than earlier tests.
Extracting the entropy from such a source is a challenging
theoretical problem [29], but under the random oracle heuris-
tic simply applying a cryptographic hash to the test vector
is sufficient. NIST has published explicit recommendations
for implementing what they call “reseeding” in randomness
generators [1].

3) Raspberry Pi: The Raspberry Pi is a popular
single-board ARM computer, built around the Broadcom
BCM2835 System–on–a–chip (SoC), which contains an
ARM 1176JZF-S ARM11 ARMv6 core clocked at 700
MHz. We modified the Linux 3.2.27 kernel provided for the
Raspberry Pi1 to perform our data collection. This involved
enabling and configuring the hardware cycle counter and
the two hardware performance counters present in the ARM
1176JZF-S, as well as surrounding each function call in
start_kernel with instrumentation to record the current
counter values, and a final function to dump our results to
the kernel log. We were able to surround every function in
start_kernel, for a total of 78 individual tests.

Next, we booted the instrumented kernel on four identical
Raspberry Pis, and recorded the counters for each boot.

In short, almost every test shows a surprising amount of
variation in the number of cycles it takes to execute. Figures
1, 2, 3, and 4 show a histogram of test times, in cycles,
for tests 4, 5, 36, and 41 as seen across 301,647 boots
across all four Raspberry Pi devices. The lighter regions are
the contribution of device #0, which, by itself, contributes
130,961 boots. These four graphs are representative of the
four classes of histogram that we see on the Raspberry
Pi: a “two-normal” distribution like Test 4, a “quantized”
distribution like Test 5, a “bimodal plus noise” distribution
like Test 36, and a “normal” distribution like Test 41.

For comparison, Test 4 corresponds to the initialization
function cgroup_init_early(), which is responsible
for setting up process groups for resource management,
and mostly involves setting memory locations to initial
values. Test 5 is local_irq_disable(), which disables
interrupts. It consists solely of the ARM instruction "cpsid
i", and the variation in this test is likely due to hardware

1Online: https://github.com/raspberrypi/linux

https://github.com/raspberrypi/linux
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Figure 1: Histogram of cycle counts for Test 4 on 4 Rasp-
berry Pis. Lighter region is data from device #0 only.
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Figure 2: Histogram of cycle counts for Test 5 on 4 Rasp-
berry Pis. Lighter region is data from device #0 only.
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Figure 3: Histogram of cycle counts for Test 36 on 4
Raspberry Pis. Lighter region is data from device #0 only.
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Figure 4: Histogram of cycle counts for Test 41 on 4
Raspberry Pis. Lighter region is data from device #0 only.

initialization state. Test 36 is prio_tree_init(), and is
simply a small loop which initializes an array. The relatively
quantized period of this function is likely due to stalls in
memory fetches and stores. Also, note that IRQs remain
disabled until Test 45, and so interrupts cannot be blamed
for any variation in these test times.

Overall, these distributions are far wider than we initially
expected. Test 41, in particular, has a minimum value of
69,098 cycles and a maximum of 76,625, almost 10.9%
more. In this region of 7,527 cycles, the data set contains
5,667 distinct test values.

Taken individually, the results of each test give an em-
pirical distribution over the cycles elapsed during execution.
If we treat a test as a random variable, we can extract that
entropy and use it to seed a random number generator.

To estimate the entropy contribution of each test, we apply
the distribution entropy calculation to our observed data. The
results of this calculation are in Table I.

However, further investigation is needed before we pro-
claim success. While each test has between 0.45 and 12.99
bits of distribution entropy, we cannot naively sum these
numbers and proclaim that to be our total entropy produced.
In order for that approach to be valid, each test must be
statistically independent — the time taken for test T must not
depend on the results for tests (0, . . . ,T −1). If, in the worst
case, T was a known function of (0, . . . ,T−1), then it would
not contribute any entropy whatsoever to the overall total,
even if it had plenty of distribution entropy: Its distribution
entropy would already be counted by the preceding tests.
(Note that we can always safely mix the results of T into
the entropy pool. In the worst case, doing so adds no benefit.)

We applied a straightforward correlation test to the data
we gathered from the Raspberry Pi and our other sys-
tems. More sophisticated tests are possible, for example
using NIST’s test suite [32]. Specifically, we computed
the correlation coefficients between each pair of tests. We
can then select a threshold of acceptable risk, and exclude
from our entropy estimate any tests which are correlated
with another test beyond that limit. Figure 5 shows the
full entropy estimate function for the Raspberry Pi for
all possible thresholds. This function is surprisingly linear,
suggesting that the Raspberry Pi tests, while correlated, do
not cluster together when taken as a whole. With no self-
evident threshold to pick, we arbitrarily exclude from our
entropy estimate any tests having correlation of 0.4 or more
with another test.

Applying this test to our Raspberry Pi data, we find
some intriguing results. Figure 6 shows a scatterplot of
Test 4 and Test 7. The former is the kernel function
cgroup_init_early, which is responsible for initializ-
ing resource–managing process groups, and mainly consists
of initializing variables throughout kernel memory. The
latter, on the other hand, is boot_cpu_init, which is in
charge of marking the CPU as “online” and “active”, allow-



Test RPi BB Trim-
Slice

Dragon
Board

Mini-
6410

Cubox WRT NGW

#0 4.07 4.10 5.70 9.48 - 0.12 8.14 4.33
#1 1.91 7.31 4.31 4.30 0.55 5.02 6.82 0.-
#2 0.85 2.32 4.77 2.33 0.- 0.- 7.25 1.80
#3 8.51 2.58 9.97 10.34 0.29 0.42 4.66 0.-
#4 9.32 8.76 10.88 9.51 5.41 0.- 4.66 0.-
#5 2.58 2.78 2.95 2.74 0.17 0.- 4.15 0.77
#6 6.58 2.33 8.86 5.04 0.51 1.21 8.04 2.36
#7 5.25 5.45 7.66 5.44 3.28 2.12 8.80 1.05
#8 2.24 3.85 9.45 8.77 0.34 2.45 2.21 1.80
#9 8.79 5.09 10.98 8.97 6.03 4.55 3.57 2.19

#10 13.42 9.32 11.28 14.21 7.74 7.92 6.60 2.19
#11 2.73 11.42 8.54 4.01 1.78 0.- 7.87 2.19
#12 2.73 6.25 7.97 2.47 6.34 0.- 7.99 2.19
#13 8.48 5.27 9.77 8.63 0.03 1.68 8.70 1.00
#14 2.28 9.82 8.67 6.06 7.47 0.- 0.78 1.58
#15 12.19 7.54 10.79 10.85 0.79 2.41 0.41 1.00
#16 2.00 11.12 7.95 4.96 6.93 0.- 1.59 0.-
#17 9.83 6.40 9.95 10.20 0.70 1.52 6.22 0.-
#18 3.88 10.04 8.38 8.44 6.95 0.- 9.92 1.00
#19 8.48 8.27 9.40 7.67 7.30 0.01 9.09 0.-
#20 11.43 9.21 10.43 6.65 7.32 2.53 8.66 1.00
#21 3.24 6.15 3.80 11.12 6.74 0.- 7.28 1.00
#22 6.30 10.59 8.59 6.37 1.27 1.05 8.66 0.-
#23 10.85 6.63 10.18 9.72 7.60 1.50 9.34 1.00
#24 13.52 5.89 10.51 9.68 6.82 1.14 - 1.00
#25 9.85 10.55 10.28 10.83 4.94 1.84 - 0.-
#26 2.29 10.17 6.26 4.05 7.73 0.- - 1.00
#27 14.15 8.47 11.29 14.43 7.73 2.90 - 1.00
#28 8.14 4.85 10.41 10.24 4.07 1.77 - 1.00
#29 3.80 11.77 8.68 4.97 7.36 0.- - 0.-
#30 9.60 10.20 10.01 2.21 7.22 1.99 - 0.-
#31 10.29 3.74 10.03 10.15 7.56 2.07 - 0.-
#32 5.14 3.20 10.05 9.73 7.57 0.- - 0.-
#33 9.28 9.89 9.54 10.27 4.79 2.18 - 5.90
#34 11.83 9.52 11.02 8.24 6.33 2.78 - 0.02
#35 11.07 10.49 10.76 12.70 4.94 3.57 - 0.-
#36 7.67 9.81 7.94 11.00 4.67 1.12 - 0.-
#37 9.21 10.41 10.29 4.96 7.07 2.12 - 0.-
#38 7.53 11.31 9.25 8.45 7.53 1.26 - 0.-
#39 7.38 9.24 8.68 4.43 0.64 0.10 - 0.14
#40 8.15 8.07 11.17 6.28 7.53 2.96 - 0.12
#41 11.67 7.36 10.81 8.78 4.50 5.49 - 5.07
#42 7.02 8.88 8.41 13.75 1.35 1.04 - 4.27
#43 2.21 11.55 9.24 3.55 9.74 0.- - 1.25
#44 3.88 7.99 6.43 6.65 4.20 0.93 - 1.90
#45 4.27 9.08 6.70 1.06 0.82 0.- - 0.-
#46 10.97 4.33 9.05 1.62 2.82 5.57 - 6.00
#47 11.36 3.22 10.67 9.65 0.65 3.85 - 5.35
#48 2.47 4.00 0.06 2.79 1.05 0.- - 3.55
#49 2.46 6.24 3.48 2.89 0.92 0.- - 0.-
#50 2.64 11.24 8.03 10.36 0.70 0.08 - 2.28
#51 2.64 7.09 5.91 1.96 8.14 0.- - 2.02
#52 2.58 5.47 7.08 1.49 2.34 0.- - 3.01
#53 1.79 5.25 6.97 5.16 9.93 0.- - 2.80
#54 3.19 6.23 7.38 3.03 9.96 2.75 - 0.-
#55 10.68 4.88 10.12 3.62 12.88 0.08 - 0.-
#56 4.65 4.60 3.31 1.91 11.21 0.02 - 0.-
#57 5.16 4.26 7.99 1.78 10.48 5.37 - 3.83
#58 6.65 10.05 5.11 8.85 3.09 5.06 - 3.25
#59 12.56 5.37 10.91 6.19 8.04 3.51 - 2.52
#60 11.23 5.44 10.33 2.50 9.09 1.68 - 3.25
#61 9.62 5.81 10.09 2.01 10.23 3.15 - 0.-
#62 4.60 11.76 8.93 11.67 8.88 2.83 - 0.-
#63 8.05 10.61 9.10 9.53 0.88 4.03 - 0.-
#64 8.92 10.44 9.97 9.50 0.54 2.03 - 0.-
#65 10.42 5.80 9.85 3.60 1.04 0.06 - 1.28
#66 8.79 8.17 9.22 8.20 11.73 0.- - 0.-
#67 8.55 8.97 9.41 9.80 9.63 0.- - 0.-
#68 1.73 9.86 10.71 9.94 6.87 4.15 - 0.-
#69 11.03 9.40 10.45 9.07 11.69 3.70 - -
#70 12.99 8.20 10.99 7.87 11.20 2.06 - -
#71 10.42 10.76 10.02 3.20 1.99 4.00 - -
#72 8.50 10.52 9.52 2.46 0.99 0.- - -
#73 10.92 11.15 10.62 12.03 0.77 0.- - -
#74 11.79 9.75 10.70 9.79 12.28 0.68 - -
#75 2.45 9.57 8.82 8.94 1.63 0.- - -
#76 9.48 11.23 9.93 10.73 1.22 4.71 - -
#77 9.45 - 9.70 11.07 1.26 0.- - -

Sum 564.98 594.66 683.40 557.84 394.78 129.15 151.41 90.21

Table I: Per-Test Distribution Entropy, in bits
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Figure 5: Total Raspberry Pi entropy estimate as a function
of acceptable correlation threshold

Figure 6: Cycle counts for Tests 4 and 7 on the Raspberry Pi.
Correlation coef. = −0.79. Line is the best-fit linear model.

ing other cores to communicate. (Note that the Raspberry
Pi has only a single core, but still executes this step.) We
have so far been unable to determine a causal relationship
between these two tests that might account for the extremely
odd relationship in Figure 6.

While we do not believe that the correlations between
tests are particularly helpful to an attacker (since a remote
or local but post-boot attacker will not have access to the
preceding T −1 test values), in the interests of caution, we
modify our entropy estimate as follows: for each successive
variable, add its distribution entropy to the total if and only
if, when correlated with each preceding variable in turn,
never has a correlation coefficient with magnitude ≥ 0.4. If
the variable is thus correlated with a preceding variable, we
ignore its sampled distribution entropy entirely.

When computed across the entire Raspberry Pi data set,
this conservative estimate places the summed distribution
entropy of pairwise uncorrelated variables at 231.9 bits —
far beyond the reach of exhaustive-search attacks.

Finally, to ensure that this analysis is not completely off,
we compute the distribution entropy over the entire data set
of 79-element vectors. For the 301,647 Raspberry Pi boot
measurements in our data set, every single one is unique,



giving a distribution entropy of 18.2 bits. Since distribution
entropy cannot extrapolate beyond the size of the empirical
data set, this is an empirical lower bound on the entropy
available by simply instrumenting the boot procedure of
Linux on the Raspberry Pi, and, given our calculations
above, we believe that there is more than sufficient entropy
available during the Raspberry Pi’s boot process to securely
seed the Linux randomness generator.

4) BeagleBoard xM: The BeagleBoard xM is powered
by a Texas Instruments DM3730 SoC, containing a 1 GHz
Cortex-A8 ARMv7 superscalar CPU core. We acquired and
modified a patched Linux 3.2.28-x142 to include 77 tests in
start_kernel.

We have less Linux boot data for the BeagleBoard than
our other systems, as we re-purposed the BeagleBoard for
other experiments, detailed in Section IV. Nevertheless, we
collected data on 3,580 boots.

Per-test distribution entropies for the BeagleBoard are in
Table I. Naively summing, these 77 tests give 594.66 bits of
entropy between them. Our correlation coefficient threshold
test reduces this slightly, to 430.06 bits. As for empirical
distribution entropy, all 3,580 boot sequences are unique,
giving a distribution entropy floor of 11.81 bits.

5) Trim-Slice: The Trim-Slice is another ARM single-
board computer, designed for use as a desktop PC. It
contains a 1 GHz NVIDIA Tegra 2 dual-core Cortex-A9
ARMv7 CPU, and a variety of storage options. To stay
consistent with our other devices, we chose to boot the Trim-
Slice from its MicroSD slot. We modified a Linux 3.1.10-
l4t.r15.02 kernel3 to include our instrumentation, and set the
machine to rebooting. Our particular model had an issue of
failing to reboot every so often, limiting our data collection
for this device.

Nevertheless, we instrumented 2,522 reboots of the Trim-
Slice, collecting cycle counts for 78 tests, similar to the
Raspberry Pi kernel. Per-test distribution entropy can be
found in Table I, giving a total sum of 683.40 bits (which,
again, may not be an accurate total estimate). Interestingly,
even though the Trim-Slice data set contains 100 times
fewer boots than the Raspberry Pi data, the per-test distri-
bution entropies are roughly similar across the board. Since
distribution entropy chronically underestimates the entropy
of the underlying distribution, this implies that the Trim-
Slice’s Tegra 2 has a much wider test variation than the
ARM 1176JZF-S, which is eminently plausible given that
the Tegra 2 is a dual-core platform and based on a Cortex-
A9, a larger and more complex core than in the Raspberry
Pi.

The Trim-Slice tests also appear to show much less cor-
relation than the Raspberry Pi. When we apply our method
of summing only the distribution entropy of variables which

2Online: https://github.com/RobertCNelson/stable-kernel
3Online: https://gitorious.org/trimslice-kernel

are not pairwise correlated with any previous test (cor. coef.
≤ 0.4), the Trim-Slice tests still show a shocking 641.48 bits
of entropy. Even if this overstates the actual amount by a
factor of 3, there is easily enough entropy extractable on
boot to seed any pseudorandom generator.

Finally, as one might expect given the data thus far, each
of the 2,522 78-element test vectors sampled on a given
Trim-Slice boot is unique, giving a total distribution entropy
of 11.30 bits. Again, this represents an empirical lower
bound, and is one which we believe is extremely low.

6) Intrinsyc DragonBoard: The Intrinsyc DragonBoard
is a fully-featured mobile device development board based
around the Qualcomm SnapDragon S4 Plus APQ8060A
SoC, which includes a Qualcomm Krait ARMv7 dual-core
CPU. Designed as a development board for Android mobile
devices, it includes hardware such as a touch screen, wi-fi
radio, and a camera module.

As a mobile device development platform, the Drag-
onBoard runs Android 4.0.4 and is backed by a Intrinsyc-
modified Linux 3.0.21 kernel. As a result, our patch set
was easy to apply. As usual, we inserted 78 tests into
start_kernel. Instead of a Linux init script for collect-
ing the data, we used the Android adb tool to connect to
the device via USB, dump the kernel logs and reboot the
device. In this way, we collected data on 27,421 boots.

In general, we see excellent entropy generation when
booting Linux on the Krait. The per-test distribution en-
tropies can be found in Figure I, with a per-test sum of
557.84 bits. As with our preceeding three ARM SoCs, each
boot sequence is unique, giving a empirical distribution
entropy of 14.74 bits. The tests are also highly uncorrelated:
applying our correlation coefficient threshold test lowers the
entropy estimate only slightly to 523.55 bits.

Resource-rich embedded devices, such as phones, have
a plethora of available sources of entropy – for example,
simply turning on one of their radios. This test, though,
shows that our entropy generation technique can protect
these devices as well.

7) FriendlyARM Mini6410: The FriendlyARM Mini6410
is yet another single-board ARM device. This particular unit
is powered by a Samsung S3C6410A SoC, and contains a
ARM 1176JZF-S ARM11 core clocked at 533 MHz. As
before, we modified the Linux 2.6.38 manufacturer-provided
kernel to instrument start_kernel, and inserted 77 tests.

Next, we let the FriendlyARM reboot 46,313 times. Inter-
estingly, the data from the FriendlyARM differs significantly
from our other ARM results.

First, the per-test distribution entropies for the Friendly-
ARM can be found in Table I. (The FriendlyARM tests are
offset by one to align identical kernel initialization functions
between devices as much as possible.) At first glance, the
per-test distribution entropies seem reasonable, given that
they are bounded above by lg(46,313) = 15.4 bits, naively
summing to 394 bits of entropy.

https://github.com/RobertCNelson/stable-kernel
https://gitorious.org/trimslice-kernel


The oddness arrives when we examine the distribution
entropy across boot vectors, and not just individual test
measurements. Unlike most other ARM SoC we tested, the
FriendlyARM occasionally produces identical boot vectors
on multiple independent boots. The two most common
vectors each appear 15 times in the dataset, giving a min-
entropy of 11.59 bits. In other words, a sufficiently prepared
adversary, given a single guess, can correctly predict the
FriendlyARM’s boot vector with probability 2−11.59, or
about 1 in 3,000. Given 233 guesses, this probability rises
to 2−4.7, or about 1 in every 25. However, this probabilistic
defect does not render our instrumentation worthless. Fifty-
five percent of vectors in the data set are unique, meaning
that this method can fully protect the Linux randomness
generator on the FriendlyARM over half the time, for
a negligible cost during kernel initialization. Even if the
machine does boot with a more common state, mixing in
these measurements can never reduce the amount of entropy
available to the pool, and thus will never be harmful to the
system as a whole.

One might hypothesize that there is some “common” vec-
tor, and the other popular vectors are simply approximations
thereof. However, the two most popular vectors differ in 59
of 77 positions. Also, strangely, the Mini6410 contains the
same ARM core as the Raspberry Pi, which exhibits none
of these symptoms. We can find no convincing explanation
for the observed difference between these two systems.

8) Cubox: The Cubox is a commercially available desk-
top platform, powered by the Marvell ARMADA 510 SoC
with an 800 MHz Sheeva ARMv7 superscalar CPU core. We
modified a Linux 3.6.9 kernel for the Cubox4, as before, to
include 78 tests. We then rebooted the Cubox 27,421 times.

Per-test distribution entropy for the Cubox is presented
in Table I. Interestingly, it is our only ARM SoC which has
constant-time tests, i.e., tests whose distribution entropy is
zero. It also presents less test entropy overall, with a sum
of only 129.15 bits of individual test distribution entropy.

Like the FriendlyARM, the Cubox creates non-unique
boots; the most common of these occurs 80 times (0.29%).
Only 7,857 boots are unique in our data set. The total
empirical distribution entropy of the data set is 12.53 bits,
which indicates that our technique, while not solving the
entropy-at-boot problem on the Cubox, will still help protect
the kernel’s entropy generation.

9) Linksys WRT54GL: While ARM-based embedded
devices and SoCs are becoming more and more popular,
any investigation into entropy on embedded devices would
be remiss without examining how well proposed techniques
apply to the large installed base of devices. Home routers,
which were recently shown to have insufficient entropy for
certificate generation [16], represent an enormous number of
existing devices, and, perhaps more importantly, embedded

4Online: https://github.com/rabeeh/linux.git

Figure 7: Cycle counts for Tests 18 and 19 on a WRT54GL.
Each point is one boot. Line is best-fit linear model.

devices where strong entropy sources are extremely
important (e.g., key generation). To examine these routers,
we chose the Linksys WRT54GL as our test platform.

The WRT54GL is a popular consumer 802.11B/G wire-
less router, and consists of a Broadcom BCM5352 “router-
on-a-chip”, which contains a 200 MHz MIPS32 core; 16
MiB of RAM; and 4 MiB of flash. Importantly for our
purposes, Linksys provides a custom Linux 2.4.20 kernel
which can be modified and run on the device.

The stripped-down WRT54GL kernel has fewer function
calls in start_kernel than the more modern kernels
on our ARM boards, but this is to be expected given the
simplicity of the device: the kernel needn’t contain any
extraneous code. We are able, then, to insert 24 tests in the
kernel initialization.

We then ran our modified kernel on two separate
WRT54GLs, one unmodified at 200 MHz and one over-
clocked to 250 MHz. The unmodified WRT we rebooted
81,057 times, while we rebooted the overclocked device
54,465 times. The per-test distribution entropies for the
unmodified device are in Table I. Perhaps surprisingly for
this device, these per-test entropies are quite high, up to 10
bits in some cases.

However, the correlations between tests on the WRT54GL
are far more intertwined than they are on our preceding
ARM devices. Two plots of these correlations can be seen
in Figures 7 and 8.

Unfortunately, the overall entropy performance of the
WRT54GL betrays its promising per-test entropies. Across
the 81,057 boots of our unmodified router, we only see
11.86 bits of distribution entropy, and the most common
boot sequence appears 1,247 times (10.4%). Indeed, the top
188 vectors make up 37.1% of the dataset (30,062 boots).
If this were the only source of entropy for a PRNG seed, a
motivated attacker could easily brute-force these few vectors
and succeed almost 40% of the time. Even worse, there are

https://github.com/rabeeh/linux.git


Figure 8: Cycle counts for Test 0 and 11 on an WRT54GL.
Each point is one boot. Line is best-fit linear model.

only 11,960 boot sequences we saw only once. If the attacker
simply checks the 4,209 vectors that she saw more than once
during her precomputation, she will succeed against 78.6%
of boots.

This unfortunate distribution shows that boot–time en-
tropy is insufficient to protect a PRNG on a standard MIPS
home router. However, it does add somewhat more than
11.86 bits, which is our observed distribution entropy across
the 24-element test result vectors. Since the process relies
solely on an already–extant hardware counter and is virtually
free, adding it to the Linux kernel boot is still worthwhile.

Overclocking: To see if we could tease further entropy
from the WRT54GL, we tried overclocking it from 200
MHz to 250 MHz, on the theory that we could change
the ratios between clocks in different parts of the SoC
and RAM. On this modified device, we performed 54,465
reboots. Overclocking does materially change each test’s
distribution: the Kolmogorov-Smirnov test for distribution
equality reports D > 0.1,P < 2.2 ·10−16 for 19 of 24 tests,
indicating that the two device’s empirical test values are
drawn from different underlying distributions. However, the
overclocked processor shows the same type of grouping as
the unmodified system, giving only 10.4 bits of distribution
entropy over the 24-element boot vectors, with the most
common appearing 879 times (1.6%).

10) Atmel NGW100 mkII: Finally, we turn to the Atmel
NGW100 mkII, a development board for the AT32AP7000-
U AVR32 microprocessor. AVR32 processors are designed
to be small, low-cost, and low-power: in some sense, it’s
one of the smallest microprocessors capable of running
Linux. Designed to prototype network gateway devices, the
NGW100 mk II ships with multiple Ethernet connectors,
internal flash storage, and an SD card slot. To maintain
consistency, we booted the NGW100 mkII off an SD card.

We modified and built a patched Linux 2.6.35.4 kernel
using the Atmel AVR32 Buildroot system, adding 69 tests

to start_kernel. Then, via an RS-232 console, we
rebooted the board 38,157 times. The per-test distribution
entropy can be found, as usual, in Table I.

As befits our hypothesis that simpler processors produce
more constant results, 28 of the 69 tests have absolutely no
variation at all. Most of these functions are simply empty, as
the AVR32 is simple enough to not need their services (e.g.,
setup_nr_cpu_ids is a no-op, as there are no multi-core
AVR32 systems), but others do various memory initialization
tasks. The constant execution time of these functions speaks
to the minimal nature of the system as a whole.

Perhaps not surprisingly, this simplicity takes a toll on the
entropy generated during the boot process. Indeed, in our
data set, we see only 418 unique 69-element boot vectors;
the least frequent of which appears 43 times (0.1%), while
the most frequent appears 314 times (0.8%). This suggests
rather strongly that we have collected every possible vari-
ation of test times the device will generate under standard
operating conditions. The empirical distribution entropy of
our data set is 8.58 bits; this is likely all the entropy that
can be extracted from timing the NGW100 mkII boot.

III. ARCHITECTURAL CAUSES OF TIMING VARIATION

In this section, we describe two physical mechanisms
that partly explain the non-determinism we measured during
the execution of early kernel code: communication latency
(variation that can arise while sending data between two
clock domains) and memory latency (variation that arises
due to interactions with DRAM refresh). We give evidence
that these mechanisms are involved. We stress that these two
mechanisms only partly explain the behavior we observed.
Other mechanisms we do not understand are likely also
involved; we hope that future work can shed more light on
the situation.

A. Clock domain crossing

Modern embedded processors contain multiple clock do-
mains, and due to misalignment between the domains, the
amount of time it takes to send messages between two clock
domains can vary.

Processor designs use multiple clock domains to allow
different portions of the chip to run at different frequency.
For instance, on the BeagleBoard xM, the ARM Cortex-A8
runs at 1 GHz, the peripheral interconnect runs at 200 MHz,
and the Mobile DDR memory runs at 166 MHz [36].

At each boundary between two domains, chip designers
must use specialized mechanisms to ensure reliable commu-
nication. The most common solution to this problem is an
asynchronous FIFO (or queue) that enqueues data according
to one clock and dequeues it according to a second clock.

To see how an asynchronous FIFO can give rise to latency
variation, consider the case when the FIFO is empty and the
output domain tries to dequeue data at the same moment
the input domain inserts data. If the input domain’s clock
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Figure 9: Clock domains similar to the domains found on
the DM3730. In order for the processor to modify a register
in the Ethernet controller, it must cross the clock domains
of the first and second level interconnects.

arrives first, the dequeue will succeed. If the output domain’s
clock arrives first, the dequeue fails and will occur one
clock period later. If they arrive at precisely the same time,
metastability can result, which will also result in delay.
Because of random (and mostly independent) variation in
when the two clock signals arrive at the asynchronous FIFO
(i.e., clock jitter), any of these orderings is possible and
communication latency will vary.

Interactions between different clocks and metastability are
well-known sources of very high-quality randomness [5, 25,
34], so it is tempting to try to exploit the domain crossing
that already exist in a design to generate random bits.

In order to observe to interactions between clocks on
our device, we instrumented code to measure the latency
of communication between different clock domains. On
the BeagleBoard xM, there are two on-chip-buses that
connect peripherals, similar to the diagram on Figure 9.
The processor, peripherals and interconnects are clocked by
several different PLLs. For the processor to communicate
with peripherals on the SoC, the processor must cross these
clock domains. Our approach was to measure the variation in
latency in communication devices with an increasing number
of clock domain crossings. Specifically, we measured the
number of cycles it took to perform to complete a set of
instructions which did not cross the interconnect (two NOP
instructions), to cross the first level interconnect (reading
the revision number register of the memory controller) and
to cross the second level interconnect (reading the revision
number register of the system clock controller).

Our results are shown in Figure 10. Variability in fre-
quency increases with the number of clock domains crossed.
At two clock domain crossings, the distribution is bimodal.
While there may be some serial correlation between repeated
runs, this indicates that a read from the second level inter-
connect can provide up to around 2 bits of entropy. Reads
from this register are also fast: at an average of 270 cycles,
millions of these reads can be performed each second.
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Figure 10: Execution latency for two NOP instructions
(NOP), a read from the general purpose memory controller
(GPMC), and a read from the clock manager (CM). Cycle
delta is the difference from the minimum cycles observed.

B. DRAM Access Latency

A second source of variation in performance is interac-
tions between main memory (i.e., DRAM) accesses, DRAM
refresh, and the memory controller. Because DRAM bits de-
cay over time, the system must periodically read and re-write
each DRAM storage location. Depending on the system, the
processor’s memory controller issues refresh commands or,
alternately, the processor can place the chips in an auto-
refresh mode so they handle refresh autonomously.

Regardless of who manages it, the refresh process cycles
through the DRAM row-by-row, and an incoming memory
access (e.g, to fetch part of the kernel for execution) may
have to wait for the refresh to complete.

To measure the effect of refresh on execution timing,
we used hardware performance counters to measure the
number of cycles it took to execute a series of 64 NOP
instructions on a ARM Cortex-A9 [39] with the instruction
cache disabled 100,000 times. We then used a software
register to turn refresh off and performed the test again. The
results of our test are plotted in Figure 12. The variation
in execution latency was much greater with refresh turned
on: with refresh on, execution fell into 6 bins, with ≈80%
distributed at the mode and ≈20% distributed in the other 5
bins. With refresh off, over 99% of executions fell into the
mode with less than 1% distributed in two other bins.

While refresh itself may appear to induce random distri-
butions in our experiment, the state machines in the memory
controller and the DRAM chips that manage refresh are
deterministic, as is the execution of code on the CPU
that generates requests. If the rest of the system were
deterministic as well, we expect that DRAM accesses would
have deterministic latencies.

However, other sources of randomness can affect the rela-
tionship between the processor and the DRAM refresh state
machines. For instance, the PLL for the DRAM controller
may “lock” more quickly than the processor’s PLL at system
(see 4 in Figure 11) boot or the DRAM controller’s power
supply may take longer to stabilize at start up (see 1 in
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Figure 11: Power and clocks on the startup of a typical
embedded system. At 1 , the voltage is ramped up until it is
stable, which can take a variable amount of time. At 2 , The
system oscillator is turned on and takes a variable amount
of time to stabilize. At 3 , the PLLs that source the high
frequency clocks for the processor (PLL_OUT) and memory
(MEM_PLL) are turned on and take a variable amount of
time to stabilize. At 4 , the time that the memory clock
and processor clocks cross is variable but fully determined
by the time that both PLLs stabilize. At 5 , a small amount
of jitter in the memory clock causes the position the clocks
cross to change.
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Figure 12: Execution latency with refresh on and off.

Figure 11). In this case, the future interactions between the
processor and refresh state machine will be affected, and the
latency for DRAM accesses will vary slightly. In addition to
variation in the system’s initial conditions, randomness from
clock domain crossing can further perturb the interaction
between the processor and memory.

IV. DRAM DECAY

Ultimately, the most useful source of randomness we
found in these system is the decay of data stored in DRAM
over time. DRAM decay occurs when the charge that stores a
binary value leaks off the capacitor in a DRAM storage cell.
This phenomenon is well-studied, and the refresh process
(described in III-B) is designed to mitigate it.

Figure 13: Decay of DRAM after 7 (Blue), 14 (Green), 28
(Yellow) and 56 (Red) seconds.

A. Disabling Refresh

In order to detect decay in a live system, we must prevent
the system from refreshing DRAM. The ability to disable
refresh on the memory controller is not an exotic feature:
Nearly every memory controller we looked at supported
disabling refresh, and every embedded SoC we looked at,
from the Broadcom BCM5352 found in the WRT54GL to
the DM3730 on the BeagleBoard xM had software tunable
parameters for controlling refresh [36, 39]. Typically, control
over refresh is used to implement sleep modes. When a
processor enters a sleep mode, it disables refresh on the
memory controller and sends a command to the DRAM
chips to enter “self-refresh” mode, forcing the DRAM chips
refresh themselves as needed. By turning off refresh on
the memory controller and not sending the “self-refresh”
command, we were able to observe decay in our test systems.

B. Decay

The decay rate of DRAM bits varies widely (a fact
exploited by “cold boot” techniques [13]) as a result of
manufacturing variation, temperature, the data stored in the
cell, and other factors. In our experiments, some bits will
decay quickly (e.g., on the order of hundreds of µs) while
others will retain their data for seconds or hours. We find that
the rate at which bits decay varies with even small variations
in temperature (see Section IV-D2).

C. Experimental Setup

Our approach to harvesting randomness from DRAM is
as follows. Very early in the boot process (i.e., in the boot
loader) we write test data to a portion of DRAM, and
then disable the refresh mechanism in both the processor’s
memory controller and the DRAM chips. The processor then
waits several seconds, reads the data back, and XORs it
with pattern written initially. Any flipped bits will appear at
this stage. After this process, the bootloader can re-enable
refresh, reinitialize DRAM, and continue loading as normal.
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Figure 14: Probability of decay, per bit, for non-refresh times of 7s, 14s, and 28s. Ordered by Pr(decay) at 28s.

Figure 15: Probability of decay after one minute.

Next, we modified both layers of U-Boot, as well as the
Linux kernel, to incorporate the generated entropy into the
kernel randomness pools. We use a custom extracting hash
to condense the memory decay into 1,024 bits, and pass
the result into the kernel as a base-64-encoded parameter.
Overall, hashing and processing takes less than second, on
top of the unavoidable multiple-second DRAM decay time.

D. Results

1) Decay Probability and Distribution: Although we
could reliably observe many bits decaying, the distribution
of decay was not uniform. Figure 15 shows the distribution
of decay probabilities at 58 seconds. The values range from
0 (white) to very low (green) to near certainty (red). The
figure also shows that some areas of the DRAM do not
appear to decay at all.

The horizontal bands in the figure are due to the test
pattern initially written to memory. We wrote 0xAA to the
top quarter of memory, 0x00 to the next quarter, 0xFF to the
next, and 0x55 to the last quarter. In the areas which show no
decay, the pattern (0x00 or 0xFF) matched the cell’s “ground
state” (i.e., the state into which the cell naturally decays).
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Figure 16: Relationship between temperature and DRAM
decay over a constant period.

This can vary because chips use different voltages for “0”
and “1” in different portions of the chip.

Figure 13 shows decay over time. The yellow bits decayed
first and the red bits decayed last. Unsurprisingly, the
longer the interval, the more bit errors occur and the more
randomness we are able to extract. In Figure 14, each bit’s
probability of decay over 7, 14, and 28 seconds has been
graphed. Perhaps unsurprisingly, every bit that ever decays
within 7 seconds has a 100% chance of decaying in 14 or
28 seconds. Interestingly, a number of bits with a non-zero
probability of decaying in 14 seconds don’t always decay by
28 seconds, indicating that DRAM bits don’t simply decay
in a set order, and can provide true entropy.

2) Temperature Dependence: Previous work has shown
that decay varies with DRAM temperature. To compensate,
many systems increase the refresh frequency as temperature
increases [21, 35]. Primarily, this is due to the increase in
DRAM cell leakage as temperature rises [21]. To understand
the effect of this temperature dependence on the probability
of decay, we set up an experimental protocol that allowed
us to control the temperature of DRAM. By submerging



DRAM in non-conductive isopropyl alcohol inside a refrig-
erator and using an aquarium heater, we were able to control
the DRAM temperature to ±1 ◦ C. For temperatures above
35 ◦ C, we used a laboratory oven to measure decay at high
temperatures.

Our results are shown in figure 16. We find that at low
temperatures, the few bits which decay are consistent (i.e.
the same bits always decay). Around 20 ◦ C, we begin to see
bits that sometimes decay. At room temperature (23 ◦ C), we
begin to see an exponential rise in bit decay.

3) DRAM Temperature Modification: We can generate
more randomness by increasing the temperature of the
DRAM chip. To accomplish this we wrote a simple ‘power
virus’ that attempts to maximize DRAM power consumption
and heat dissipation. The virus initializes a region of DRAM
and then reads repeatedly from different addresses. The
initial data and the addresses are choosen to maximize the
transition frequency on the DRAM pins.

We find that by implementing our power virus, we heat
up the DRAM from 26 ◦ C to 29 ◦ C within 1 minute. We
run the power virus while waiting for bits to decay.

4) Variability: In addition to randomness in bit decay
between boots, we also observed two kinds of variability
between individual boards: Decay probability variability, the
variability in the probability that different bits will decay;
and cold state variability, the variability in the initial contents
of DRAM after a cold boot.

This variability is due to manufacturing variations that
cause DRAM cells to leak at different rates, leading to the
decay probability variability we observe. Process variations
in the sense amplifiers (which convert the analog values
from the DRAM bits into logical “0”s and “1”s) is also
well documented [15], and probably contributes as well.

The variation in the DRAM’s contents from a cold boot
(measured after the device was powered off for 3 days) can
provide a unique fingerprint for each board. For instance, at
25−28 ◦ C with a delay of 7s, on one BeagleBoard, a certain
10 bits always decay, while the other BeagleBoard has only
6 such bits. The two sets are disjoint; that is, the bits that
decay on one board do not decay on the other.

Under the assumption that, due to process variation, the
placement of these “leaky” bits is independent between
different DRAM modules, the locations of leaky bits act
as a fingerprint for a particular BeagleBoard. Verifying this
assumption about the distribution of leaky bits would require
access to more systems than we have, and we leave it to
future work.

E. Extracting per-boot randomness from DRAM

The location of leaky bits cannot, by itself, be the basis
for random number generation. An attacker who has physical
access, who can mount a remote code-injection exploit, or
can otherwise run software on the device will be able to

locate its leaky bits. Therefore, we must examine the bits
that sometimes decay and sometimes do not.

We now give a rough estimate for the amount of entropy
available in the decay of these bits. Our analysis makes
the assumption that bits decay independently of each other.
This is a strong assumption and there evidence that it is at
least partly false, e.g., Section 3.3 of [13]. Accordingly, the
entropy estimates below are overestimates. We hope future
work can provide a better measure of available entropy.

We estimate Pr[decay] for each bit based on our experi-
ments and use this probability to compute the information
theoretic entropy content for this bit:

E(p) =−
(

p · lg(p)+(1− p) · lg(1− p)
)

(3)

Under the assumption that bits decay independently of each
other, we can simply sum this distribution entropy over every
bit we saw decay.

For a BeagleBoard xM at 25-27 ◦C and with a decay time
of 7 s, we obtain a total boot-time entropy estimate of 4.9
bits, largely due to the fact that only 19 memory decays ever
happen, and 16 of these happen with p > 0.9 or p < 0.1. For
a decay time of 14s, we see 511 bits ever decay, and sum-
ming their entropy contributions gives an entropy estimate
of 209.1 bits. For a delay of 28s, 9,943 bits decay, for an
estimated entropy of 8,415.16 bits. For 56 seconds, we see
427,062 decays, for an estimated entropy of 98,611.85 bits.

A delay of even 14s on first boot is unacceptable in many
applications. Moreover, because DRAM decay depends on
temperature, this approach may not provide security in very
cold conditions — for example, phones used on a ski slope.

V. PLL LOCK LATENCY

The PLLs that produce the on-chip clocks in modern
processors are complex, analog devices. When they start up
(or the chip reconfigures them), they take a variable amount
of time to “lock” on to the new output frequency (see 3 in
Figure 11). This variation in lock time is due to a number of
factors, including stability of the power supply, accuracy and
jitter in the source oscillator, temperature, and manufacturing
process variation [17]. Repeatedly reconfiguring an on-chip
PLL and measuring how long it takes to lock will result in
random variations.

SoCs typically contain several PLLs used to derive clocks
for the processor, memory and peripherals. On the Beagle-
Board xM, the DM3730 contains 5 DPLLs (Digital Phase
Locked Loops). Each DPLL can be reconfigured and toggled
via a software register, and a status flag and interrupt will
signal when a DPLL is locked. To measure the time it
takes to acquire a lock, we instrumented code to disable
the DPLL for the USB peripheral clock on the BeagleBoard
xM. Using the hardware performance counter, we measured
the number of cycles it took for the DPLL to reacquire a
lock (Figure 17).
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Figure 17: DPLL lock latency histogram measured by the
performance counter on the BeagleBoard xM.

We obtain about 4.7 bits of entropy every time we re-lock
the DPLL, and it takes at most approximately 9000 cycles
(9µs) for the DPLL to re-lock. Using the DPLL lock latency,
we can obtain about 522 KiB of pure entropy per second.

DPLL lock latency could be easily polled for entropy
during early boot when the SoC first sets up the clocks and
PLLs in the system. Since the DPLL is affected by analog
conditions such as temperature, a determined attacker may
be able to induce bias in the lock time.

VI. CONCLUSION

Randomness is a fundamental system service. A system
cannot be said to have successfully booted unless it is ready
to provide high-entropy randomness to applications.

We have presented three techniques for gathering entropy
early in the boot process. These techniques provide different
tradeoffs along three metrics: how high the bitrate, how
specific to a particular system, and how well explained by
unpredictable physical processes.

Our first technique, which times the execution of kernel
code blocks, provides a moderate amount of entropy and is
easily applied to every system we examined, but we are able
to give only a partial account for the source of the entropy
it gathers.

Our second technique, DRAM decay, provides a large
amount of entropy, but presents a heavy performance penalty
and is tricky to deploy, relying on details of the memory
controller. Its advantage is a physical justification for the
observed randomness.

Our third technique, timing PLL locking, promises the
highest bitrate and is well supported by physical processes,
but its implementation requires intimate knowledge of the
individual SoC.

We implemented and characterized these techniques on
a broad spectrum of embedded devices featuring a variety
of popular SoCs and hardware, from resource-rich mobile
phone hardware to devices that aren’t much more than
an ethernet port and a SoC. While these three techniques
certainly can be applied to traditional desktop systems as
well as more powerful embedded devices, in some sense,

our tiny embedded systems start at a disadvantage. Wireless
devices can read randomness from radios; desktops can rely
on saved entropy from previous boots. Our work focuses
on adequately protecting headless, resource-poor embedded
devices, which must acquire strong entropy on their very
first boot, before they can even export network connectivity.

Our work leaves many questions open. We are able to
give only a partial explanation for the entropy we observed
in our first technique, and only a partial characterization of
the DRAM decay effects in our second technique. We hope
that future work can shed more light on the situation. More
work is also necessary to understand how much the gathered
entropy depends on environmental factors that might be
under adversarial control.

The three techniques we present exploit just a few of the
many potential architectural sources of randomness available
in modern systems. Other possible sources of entropy, which
we hope will be explored in future work, include voltage
scaling latency, GPIO pin voltage, flash memory corruption
patterns, and power supply stabilization latency.

Our three techniques are all, ultimately, workarounds for
the lack of dedicated hardware random number generators
in embedded architectures. What will spur the adoption of
such hardware, by both hardware and software developers?
What is the right way to specify such hardware for the
ARM architecture, where a high-level core description is
licensed to many processor manufacturers? Furthermore, is
it possible to verify that such a unit is functioning correctly
and free of backdoors?
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