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Abstract
The duration of floating-point instructions is a known
timing side channel that has been used to break Same-
Origin Policy (SOP) privacy on Mozilla Firefox and the
Fuzz differentially private database. Several defenses
have been proposed to mitigate these attacks.

We present detailed benchmarking of floating point
performance for various operations based on operand
values. We identify families of values that induce slow
and fast paths beyond the classes (normal, subnormal,
etc.) considered in previous work, and note that different
processors exhibit different timing behavior.

We evaluate the efficacy of the defenses deployed (or
not) in Web browsers to floating point side channel at-
tacks on SVG filters. We find that Google Chrome,
Mozilla Firefox, and Apple’s Safari have insufficiently
addressed the floating-point side channel, and we present
attacks for each that extract pixel data cross-origin on
most platforms.

We evaluate the vector-operation based defensive
mechanism proposed at USENIX Security 2016 by Rane,
Lin and Tiwari and find that it only reduces, not elimi-
nates, the floating-point side channel signal.

Together, these measurements and attacks cause us to
conclude that floating point is simply too variable to use
in a timing security sensitive context.

1 Introduction
The time a modern processor takes to execute a
floating-point instruction can vary with the instruction’s
operands. For example, subnormal floating-point val-
ues consumed or produced by an instruction can induce
an order-of-magnitude execution slowdown. In 2015,
Andrysco et al. [2] exploited the slowdown in subnor-
mal processing to break the privacy guarantees of a dif-
ferentially private database system and to mount pixel-
stealing attacks against Firefox releases 23–27. In a
pixel-stealing attack, a malicious web page learns the
contents of a web page presented to a user’s browser
by a different site, in violation of the browser’s origin-
isolation guarantees.

Andrysco et al. proposed mitigations against floating-
point timing attacks:
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• Replace floating-point computations with fixed-
point computations relying on the processor’s inte-
ger ALU.

• Use processor flags to cause subnormal values to be
treated as zero, avoiding slowdowns associated with
subnormal values.

• Shift sensitive floating-point computations to the
GPU or other hardware not known to be vulnerable.

At USENIX Security 2016, Rane, Lin, and Tiwari [15]
proposed additional mitigations:

• Use program analysis to identify floating-point op-
erations whose inputs cannot be subnormal; these
operations will not experience subnormal slow-
downs.

• Run floating-point operations whose inputs might
be subnormal on the the processor’s SIMD unit,
loading the a SIMD lane with a dummy operation
chosen to induce consistent worst-case execution
time.

Rane, Lin, and Tiwari implemented their proposed
mitigations in a research prototype Firefox browser.
Variants of the Andrysco et al. mitigations have been
adopted in the latest versions of Firefox, Safari, and
Chrome.

We evaluate how effective the proposed mitigations
are at preventing pixel stealing. We find that, other than
avoiding the floating point unit altogether, the proposed
mitigations are not effective at preventing pixel steal-
ing — at best, they reduce the rate at which pixels can
be read. Our attacks make use of details of floating point
performance beyond the subnormal slowdowns observed
by Andrysco et al.

Our contributions are as follows:

1. We give a more refined account of how floating-
point instruction timing varies with operand values
than did Andrysco et al. In particular, we show that
operands with a zero exponent or significand induce
small but exploitable speedups in many operations.

2. We evaluate the SIMD defense proposed by Rane,
Lin, and Tiwari, giving strong evidence that proces-
sors execute the two operations sequentially, not in
parallel.



Format
Name

Size
Bits

Subnormal
Min

Normal
Min

Normal
Max

Half 16 6.0e−8 6.10e−5 6.55e4
Single 32 1.4e−45 1.18e−38 3.40e38
Double 64 4.9e−324 2.23e−308 1.79e308

Figure 1: IEEE-754 Format type ranges (Reproduced
with permission from [2])

3. We revisit browser implementations of SVG filters
two years after the Andrysco et al. attacks. Despite
attempts at remediation, we find that the latest ver-
sions of Chrome, Firefox, and Safari are all vulner-
able to pixel-stealing attacks.

4. We show that subnormal values induce slowdowns
in CUDA calculations on modern Nvidia GPUs.

Taken together, our findings demonstrate that the float-
ing point units of modern processors are more complex
than previously realized, and that defenses that seek to
take advantage of that unit without creating timing side
channels require careful evaluation.
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Figure 2: IEEE-754 single precision float

Ethics and disclosure. We have disclosed the pixel-
stealing attacks we found to Apple, Google, and Mozilla.
Mozilla has already committed to deploying a patch. We
will give Apple and Google adequate time to patch be-
fore publishing our findings.

2 Background
Many floating point instructions are known to ex-
hibit performance differences based on the operands.
Andrysco et al. [2] leveraged these timing differences to
defeat the claimed privacy guarantees of two systems:
Mozilla Firefox (versions 23–27) and the Fuzz differen-
tially private database. Andrysco et al.’s attack on Fire-
fox, and the attacks on browsers we present, use SVG
filter timing to break the Same-Origin Policy, an idea in-
troduced by Stone [16] and Kotcher et al. [13].

2.1 IEEE-754 floating point
For the purposes of this paper we will refer to floating
point, floats, and doubles to mean the IEEE-754 floating
point standard (see Figure 1) unless otherwise specified.

The floating point unit (FPU) accessed via Intel’s sin-
gle scalar Streaming SIMD (Single Instruction, Multiple
Data) Extensions (SSE) instructions adheres to this stan-
dard on all processors we discuss. We omit discussion of
the x87 legacy FPU that is still accessible on a modern
x86_64 processor.

The IEEE-754 floating point standard is the most com-
mon floating point implementation available on com-
modity CPUs. Figure 2 shows the layout of the IEEE-
754 single precision float and the value calculation.
Note that the actual exponent used in the 2exp portion
is exponent − bias where the bias is half the unsigned
maximum value of the exponent’s range. This format al-
lows for the full range of positive and negative exponent
values to be represented easily. If the exponent has any
non 0 bits the value is normal, and the significand has an
implicit leading 1 bit. If the exponent is all 0 bits (i.e.,
exponent− bias = −bias) then the value is subnormal,
and there is no implicit leading 1 bit. As shown in fig-
ure 1 this means that subnormal values are fantastically
small. Subnormal values are valuable because they en-
able gradual underflow for floating point computations.
Gradual underflow guarantees that given any two floats,
a ̸= b, there exists a floating point value c ̸= 0 that is
the difference a − b = c. The use of this property is
demonstrated by the simple pseudocode “if a ̸= b then
x
/
(a−b),” which does not expect to generate an infinity

by dividing by zero. Without subnormals the IEEE-754
standard could not guarantee gradual underflow for nor-
mals and a number of adverse scenarios such as the one
above can occur. As Andrysco et al. [2] observe, subnor-
mal values do not frequently arise, and special hardware
or microcode is used to handle them on most CPUs.

Andrysco et al.’s attacks made use of the substantial
timing differences between operations on subnormal (or
denormal) floating point values and on normal floating
point values. See Figure 8 for a list of non-normal IEEE-
754 value types. In this paper we present additional
benchmarks that demonstrate that (smaller) timing dif-
ferences arise from more than just subnormal operands.
Section 3 describes our benchmarking results.

2.2 SVG floating point timing attacks
Andrysco et al. [2] presented an attack on Firefox SVG
filters that is very similar to the attacks detailed later in
this paper. Thus, we provide an overview of how that
attack works for reference.

Figure 3 shows the workflow of the SVG timing at-
tack.

1. The attacking page creates a large <iframe> of
the victim page inside of a container <div>

2. The container <div> is sized to 1x1 pixel
and can be scrolled to the current target pixel
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Figure 3: Cross-Origin SVG Filter Pixel Stealing Attack in Firefox, reproduced from [2] with permission

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 6.57 6.57 6.60 6.58 6.59 6.57 6.59 6.58 6.59
1.0 6.59 6.59 6.59 6.57 6.56 130.90 130.85 6.58 6.57

1e10 6.57 6.59 6.58 6.59 6.56 130.90 130.91 6.58 6.58
1e+30 6.59 6.56 6.58 6.59 6.57 130.90 130.91 6.59 6.58
1e-30 6.57 6.59 6.59 6.57 6.59 6.59 6.58 6.58 6.57
1e-41 6.56 130.90 130.89 130.87 6.56 6.57 6.57 130.96 130.90
1e-42 6.59 130.89 130.88 130.90 6.57 6.58 6.57 130.85 130.89
256 6.58 6.58 6.55 6.57 6.58 130.92 130.88 6.57 6.56
257 6.56 6.55 6.59 6.58 6.57 130.89 130.88 6.57 6.58

Figure 4: Multiplication timing for single precision floats on Intel i5-4460

on the <iframe> using the scrollTop and
scrollLeft properties.

3. The target pixel is duplicated into a larger container
<div> using the -moz-element CSS property.
This creates a <div> that is arbitrarily sized and
consists only of copies of the target pixel.

4. The SVG filter that runs in variable time
(feConvolveMatrix) is applied to the the pixel
duplication <div>

5. The rendering time of the filter is measured us-
ing requestAnimationFrame to get a call-
back when the next frame is completed and
performance.now for high resolution timing.

6. The rendering time is compared to the threshold de-
termined during the learning phase and categorized
as white or black.

Since the targeted <iframe> and the attacker page
are on different origins, the attacking page should not
be able to learn any information about the <iframe>’s

content. However, since the rendering time of the SVG
filter is visible to the attacker page, and the rendering
time is dependent on the <iframe> content, the attack-
ing page is able to violate this policy and learn pixel in-
formation.

3 New floating point timing observations
Andryso et al. [2] presented a number of timing varia-
tions in floating point computation based on subnormal
and special value arguments. We expand this category to
note that any value with a zero significand or exponent
exhibits different timing behavior on most Intel CPUs.

Figure 9 shows a summary of our findings for our pri-
mary test platform running an Intel i5-4460 CPU. Unsur-
prisingly, double precision floating point numbers show
more types of, and larger amounts of, variation than sin-
gle precision floats.

Figures 4, 5, 6, and 7 are crosstables showing average
cycle counts for division and multiplication on double
and single precision floats on the Intel i5-4460. We re-
fer to the type of operation (add, subtract, divide, etc) as
the operation, and the specific combination of operands



Dividend
Divisor

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 6.55 6.50 6.58 6.57 6.54 6.57 6.56 6.58 6.59
1.0 6.58 6.58 6.58 6.57 6.57 152.59 152.57 6.59 6.60

1e10 6.58 6.58 6.58 6.59 6.58 152.57 152.56 6.56 6.58
1e+30 6.57 6.57 6.59 6.57 6.56 152.59 152.51 6.58 6.60
1e-30 6.57 6.57 155.37 6.57 6.58 152.54 152.59 6.57 6.54
1e-41 6.58 149.75 6.57 6.56 152.56 152.57 152.59 149.72 152.55
1e-42 6.59 149.72 6.56 6.56 152.60 152.56 152.49 149.74 152.54
256 6.58 6.60 6.56 6.60 6.55 152.53 152.70 6.58 6.58
257 6.58 6.58 6.57 6.57 6.54 152.59 152.51 6.57 6.55

Figure 5: Division timing for single precision floats on Intel i5-4460

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.59 6.56 6.59 6.58 6.58 6.57 6.58 6.59 6.57
1.0 6.57 6.59 6.55 6.57 6.57 6.56 6.56 6.56 130.89

1e10 6.55 6.55 6.56 6.58 6.56 6.56 6.56 6.57 130.95
1e+200 6.55 6.57 6.56 6.58 6.59 6.53 6.55 6.58 130.92
1e-300 6.51 6.57 6.56 6.59 6.57 6.57 6.55 6.58 6.54
1e-42 6.55 6.57 6.55 6.57 6.55 6.58 6.58 6.58 6.55
256 6.58 6.53 6.56 6.54 6.56 6.56 6.58 6.57 130.94
257 6.59 6.57 6.60 6.56 6.58 6.56 6.57 6.59 130.90

1e-320 6.59 130.90 130.92 130.94 6.59 6.58 130.95 130.91 6.56

Figure 6: Multiplication timing for double precision floats on Intel i5-4460

and operation as the computation. Cells highlighted in
blue indicate computations that averaged 1 cycle higher
than the mode across all computations for that operation.
Cells in orange indicate the same for 1 cycle less than
the mode. Bold face indicates a computation that had a
standard deviation of > 1 cycle (none of the tests on the
Intel i5-4460 had standard deviations above 1 cycle). All
other crosstables in this paper follow this format unless
otherwise noted.

We run each computation (operation and argument
pair) in a tight loop for 40,000,000 iterations, take the to-
tal number of CPU cycles during the execution, remove
loop overheads, and find the average cycles per compu-
tation. This process is repeated for each operation and
argument pair and stored. Finally, we run the entire test-
ing apparatus 10 times and store all the results. Thus, we
execute each computation 400,000,000 times split into
10 distinct samples. This apparatus measures the steady-
state execution time of each computation.

The entirety of our data across multiple generations of
Intel and AMD CPUs, as well as tools and instructions
for generating this data, are available at https://cs
eweb.ucsd.edu/~dkohlbre/floats.

It is important to note that the Andrysco et al. [2] fo-
cused on the performance difference between subnormal
and normal operands, while we observe that there are ad-
ditional classes of values worth examining. The specific
differences on powers-of-two are more difficult to detect
with a naive analysis as they cause a slight speedup when
compared to the massive slowdown of subnormals.

4 Fixed point defenses in Firefox

In version 28 Firefox switched to a new set of SVG fil-
ter implementations that caused the attack presented by
Andrysco et al. [2] to stop functioning. Many of these
implementations no longer used floating point math, in-
stead using their own fixed point arithmetic.

As the feConvolveMatrix implementation now
consists entirely of integer operations, we cannot use
floating point timing side channels to exploit it. We in-
stead examined a number of the other SVG filter imple-
mentations and found that several had not yet been ported
to the new fixed point implementation, such as the light-
ing filters.



Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.56 6.59 6.58 6.55 6.57 6.58 6.57 6.57 6.59
1.0 6.58 6.58 12.19 12.17 12.22 12.24 6.57 12.24 165.76

1e10 6.58 6.55 12.25 12.20 12.23 12.25 6.57 12.22 165.81
1e+200 6.60 6.60 12.25 12.20 12.22 12.22 6.58 12.24 165.79
1e-300 6.59 6.57 175.22 12.24 12.17 12.22 6.52 12.23 165.83
1e-42 6.60 6.53 12.23 12.22 12.21 12.24 6.58 12.21 165.79
256 6.57 6.55 12.24 12.20 12.20 12.20 6.53 12.22 165.79
257 6.55 6.58 12.24 12.22 12.24 12.23 6.56 12.21 165.80

1e-320 6.56 150.73 165.79 6.59 165.78 165.76 150.66 165.80 165.78

Figure 7: Division timing for double precision floats on Intel i5-4460

Value Exponent Significand

Zero All Zeros Zero
Infinity All Ones Zero
Not-a-Number All Ones Non-zero
Subnormal All Zeros Non-zero

Figure 8: IEEE-754 Special Value Encoding (Repro-
duced with permission from [2])

Operation Default FTZ & DAZ -ffast-math

Single Precision
Add/Sub – – –
Mul S – –
Div S – –
Sqrt M Z –

Double Precision
Add/Sub – – –
Mul S – –
Div M Z Z
Sqrt M Z Z

Figure 9: Observed sources of timing differences under
different settings on an Intel i5-4460. – : no variation, S
: Subnormals are slower, Z : all zero exponent or signifi-
cand values are faster, M : mixture of several effects

4.1 Fixed point implementation

The fixed point implementation used in Firefox SVG fil-
ters is a simple 32-bit format with no Not-a-Number, In-
finity, or other special case handling. Since they make
use of the standard add/subtract/multiply operations for
32-bit integers, we know of no timing side channels
based on operands for this implementation. Integer di-
vision is known to be timing variable based on the up-
per 32-bits of 64-bit operands, but none of the filters

can generate intermediate values requiring the upper 32-
bits. Thus, none of the filters we examined using fixed
point had any instruction data timing based side chan-
nels. Handling the full range of floating point function-
ality in a fixed point and constant time way is expensive
and complex, as seen in [2].

A side effect of a simple implementation is that it can-
not handle more complex operations that could induce
NaNs or infinities and must process them.

4.2 Lighting filter attack
Our Firefox SVG timing attack makes use of the
feSpecularLighting lighting model with an
fePointLight. This particular filter in this
configuration is not ported to fixed point, and
performs a scaling operation over the input al-
pha channel. The surfaceScale property in
feSpecularLighting controls this scaling opera-
tion and can be set to an arbitrary floating point value
when creating the filter. With this tool, we perform the
following attack similar to the one in section 2.2. We
need only to modify step 4 as seen below to enable the
use of the new lighting filter attack.

1. Steps 1-3 are the same as section 2.2.

4.1. Apply an feColorMatrix to the pixel mul-
tiplier <div> that sets the alpha channel based en-
tirely on the input color values. This sets the alpha
channel to 1 for a black pixel input, and 0 for a white
pixel input.

4.2. Apply the timing variable
feSpecularLighting filter with a sub-
normal surfaceScale and an attached
fePointLight as the timing vulnerable fil-
ter.

5. Steps 5 and 6 are the same as section 2.2.



In this case, we differentiate between n2 multiplica-
tions of subnormal×0 (black) vs subnormal×1 (white)
where n is the width/height of the copied pixel <div>.
Since our measurements show a difference of 7 cycles vs
130 cycles for each multiplication (see Figure 4), we can
easily detect this difference once we scale n enough that
the faster white pixel case takes longer than 16ms (circa
n = 200) in our tests. We need to cross this 16ms thresh-
old as frames take a minimum of 16ms to render (60fps)
on our test systems.

In our tests on an Intel i5-4460 with Firefox 49+ we
were able to consistently obtain > 99% accuracy (on
black and white images) at an average of 17ms per pixel.
This is approximately as fast as an attack using this
method can operate, since Firefox animates at a capped
60fps on all our test systems.

We notified Mozilla of this attack and they are
working on a comprehensive solution. Firefox has
patched the surfaceScale based attack on the
feSpecularLighting filter in Firefox 52 and as-
signed the attack CVE-2017-5407.

5 Safari
At the time of writing this paper(2017), Safari has not
implemented any defensive mechanisms that hamper the
SVG timing attack presented in [2]. Thus, with a re-
work of the attack framework, we are able to mod-
ify the attack presented in Andrysco et al against the
feConvolveMatrix filter for Firefox 25 to work
against current Safari.

Webkit (Safari) uses its own SVG filter implementa-
tions not used in other browsers. None of the SVG filters
had GPU support at the time of this paper, but some CSS
transforms could be GPU accelerated.

The Webkit feConvolveMatrix filter is im-
plemented in the obvious way; multiply each ker-
nel sized pixel region against the kernel element-by-
element, sum, and divide the result by the divisor. We
can therefore cause operations with 0×subnormal or
normal×subnormal depending on the target pixel. Since
as we have seen these can a 0×subnormal can be 21×
faster than a subnormal times a normal, we can easily de-
tect the difference between executing over a black pixel
or a white pixel.

We have disclosed the attack to Apple, and discussed
options for entirely disabling cross-origin SVG filtering.
Apple is working to address the issue.

5.1 Tweaks for Safari

Note: This subsection was not present in the original pa-
per as patches were not ready at the time.

Two challenges arise from this switch; the
-moz-element feature is not present in Safari,

and there is a 1 frame delay in processing the SVG filter
application.

Rather than use -moz-element to duplicate pix-
els as in [2], we instead use the -transform :
scale(x) CSS transform. This corresponds to mod-
ifying step 3 in section 2.2. Due to the way the scale
operation works, the scaled DOM element must first be
centered in a parent element, and then the parent element
can have SVG filters applied. The ordering of trans-
forms, elements, and filters to cause the desired effect
is brittle, and we detail our exact setup in figure 10. The
“pixel” element is the element that has the vulnerable fil-
ter applied to it during the attack. The “scroll” element
selects a pixel to extract (by setting the scrollTop and
scrollLeft properties) as well as multiplying the tar-
get pixel. Finally the “frame” element is the iframe con-
taining the victim page.

We address the 1-frame delay by simply measuring
the total time it takes to render 2 frames after the SVG
filter is applied to the element. This is accomplished
by chaining 2 requestAnimationFrame callbacks.
This consistently allowed us to measure the render time
of the target SVG filter on our test machine. However,
this does limit the maximum rate of pixel extraction since
we only get at best a pixel every 33ms.

6 DAZ/FTZ FPU flag defenses in Chrome
Google Chrome implements CSS and SVG filter support
through the Skia 1 graphics library. As of July of 2016,
when executing Skia filters on the CPU, Chrome enables
an FPU control flag based countermeasure to timing at-
tacks. Specifically, Chrome enables the Flush-to-Zero
(FTZ) and Denormals-are-Zero (DAZ) flags.

These flags are two of the many FPU control flags that
can be set. Flags determine options such as when to set
a floating point exception, what rounding options to use,
and how to handle subnormals. The FTZ flag indicates
to the FPU that whenever it would produce a subnormal
as the result of a calculation, it instead produces a zero.
The DAZ flag indicates to the FPU that any subnormal
operand should be treated as if it were zero in the com-
putation. Generally these flags are enabled together as a
performance optimization to avoid any use or generation
of subnormal values. However, these flags break strict
IEEE-754 compatibility and so some compilers do not
enable them without specific optimization flags. In the
case of Chrome, FTZ and DAZ are enabled and disabled
manually in the Skia rendering path.

6.1 Attacking Chrome
We present a cross-origin pixel stealing attack for Google
Chrome using the feConvolveMatrix filter. As in
our previous attacks, we observe the timing differences
between white and black pixels rendered with a spe-



<div id="pixel" style="width:500px;height:500px;overflow:hidden">
<div id="scroll" style="width:1px; height:1px; overflow:hidden; transform:scale(600.0);

margin:249px auto">
<iframe id="frame" position="absolute" frameborder="0" scrolling="no" src="TARGET_URL"/>
</div>

</div>

Figure 10: HTML and style design for the pixel multiplying structure used in our attacks on Safari and Chrome

Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.58 6.59 6.58 6.55 6.59 6.54 6.54 6.56 6.56
1.0 6.55 6.55 12.23 12.19 12.22 12.22 6.56 12.25 6.56

1e10 6.58 6.59 12.22 12.22 12.21 12.21 6.59 12.23 6.59
1e+200 6.57 6.59 12.22 12.20 12.17 12.21 6.58 12.17 6.57
1e-300 6.59 6.57 12.18 12.23 12.24 12.22 6.59 12.24 6.57
1e-42 6.58 6.56 12.21 12.25 12.23 12.18 6.56 12.21 6.58
256 6.57 6.60 12.20 12.22 12.24 12.24 6.57 12.23 6.54
257 6.57 6.58 12.22 12.23 12.25 12.20 6.57 12.23 6.58

1e-320 6.57 6.58 6.60 6.51 6.59 6.57 6.58 6.55 6.58

Figure 11: Division timing for double precision floats on Intel i5-4460+FTZ/DAZ

cific convolution matrix. This attack works without any
changes on all major platforms for Chrome that support
GPU acceleration. We have tested it on Windows 10 (In-
tel i7-6700k), Ubuntu Linux 16.10 (Intel i5-4460), OSX
10.11.6 (Intel i7-3667U Macbook Air), and a Chrome-
book Pixel LS ChromeOS 55.0.2883.105 (i7-5500U) on
versions of Chrome from 54-56. The attack is very simi-
lar to the one detailed in section 2.2 and figure 3.

Unlike Firefox, we cannot trivially supply subnormal
value like “1e-41”, as the Skia SVG float parsing code
treats them as 0s. The float parsing in Skia attempts to
avoid introducing subnormal values by disallowing ex-
ponents ≤−37. Thus we use the value 0.0000001e−35
or simply the fully written out form, which is correctly
parsed into a subnormal value. Since the FTZ and DAZ
flags are set only on entering the Skia rendering code, the
parsing is not subject to these flags and we can always
successfully generate subnormals at parse time.

The largest obstacle we bypass is the use of the FTZ
and DAZ control flags. These flags reduce the precision
and representable space of floats, but prevent any perfor-
mance impact caused by subnormals for these filters in
our experiments. As shown in section 3 even with these
flags enabled the div and sqrt operations still have
timing variation. Unfortunately none of the current SVG
filter implementations we examined have tight division
loops over doubles, or tight square root operations over
floats. Thus, our attack must circumvent the use of the
FTZ and DAZ flags altogether.

Chrome enables the FTZ and DAZ control flags when-
ever a filter is set to run on the CPU, which disallows
our Firefox or Safari attacks from applying directly to
Chrome. However, we found that the FTZ and DAZ flags
are not set when a filter is going to execute on the GPU.
This would normally only be useful for a GPU-based at-
tack but we can force the feConvolveMatrix filter
to abort from GPU acceleration at the last possible mo-
ment and fall back to the CPU implementation by having
a kernel matrix over the maximum supported GPU size
of 36 elements. Chrome does not enable the FTZ and
DAZ flags when it executes this fallback, allowing our
timing attack to use subnormal values.

We force the target <div> to start on the GPU render-
ing path by applying a CSS transform:rotateY()
to it. This is a well known trick for causing future anima-
tions and filters to be performed on the GPU, and it works
consistently. Without this, the feConvolveMatrix
GPU implementation would never fire, as it will not
choose the GPU over the CPU on its own. It is only be-
cause of our ability to force CPU fallback with the FTZ
and DAZ flags disabled that allows our CPU Chrome at-
tack to function.

Note that even if FTZ/DAZ are enabled in all cases
there are still scenerios that show timing variation as seen
in figures 11 and 9. Chrome’s Skia configuration cur-
rently uses single precision floats, and thus only need
avoid sqrt operations as far as we know. However, any
use of double precision floats will additionally require



avoidance of division. We did not observe any currently
vulnerable uses of single precision sqrt, or of double pre-
cision floating point operations in the Skia codebase.

We notified Google of this attack and a fix is in
progress.

6.2 Frame timing on Chrome
An additional obstacle to our Chrome attack was obtain-
ing accurate frame render times. Unlike on Firefox or
Safari, adding a filter to a <div>’s style and then calling
getAnimationFrame is insufficient to be sure that
the time until the callback occurs will accurately repre-
sent the rendering time of the filter. In fact, the frame
that the filter is actually rendered on differs by platform
and is not consistent on Linux. We instead run algorithm
1 to get the approximate rendering time of a given frame.
Since we only care about the relative rendering time be-
tween white and black pixels, the possibly extra time in-
cluded doesn’t matter as long as it is moderately consis-
tent. This technique allowed our attack to operate on all
tested platforms without modification.

Result: Duration of SVG filter rendering
total_duration = 0ms;
long_frame_seen = False;
while true do

/* Wait for next frame */
requestAnimationFrame;
if duration > 40ms then

/* Long frame probably
containing the SVG
rendering occurred */

long_frame_seen = True;
total_duration += duration;

else
if long_frame_seen then

/* A short frame after a
long frame */

return total_duration;
end

end
total_duration += duration;

end
Algorithm 1: How to measure SVG filter rendering
times in Chrome

7 Revisiting the effectiveness of Escort
Escort [15] proposes defenses against multiple types of
timing side channels, notably a defense using SIMD vec-
tor operations to protect against the floating point attack
presented by Andrysco et al in [2].

Single Instruction, Multiple Data (SIMD) instructions
are an extension to the x86_64 ISA designed to improve

Operation Default libdrag

Single Precision
Add/Sub – –
Mul S –
Div S Z
Sqrt M Z

Double Precision
Add/Sub – –
Mul S –
Div M Z
Sqrt M Z

Figure 12: Timing differences observed for libdrag vs
default operations on an Intel i5-4460. – : no variation, S
: Subnormals are slower, Z : all zero exponent or signifi-
cand values are faster, M : mixture of several effects

Operation Default libdrag

Single Precision
Add/Sub S S
Mul S –
Div S –
Sqrt S –

Double Precision
Add/Sub S S
Mul S –
Div S –
Sqrt S –

Figure 13: Timing differences observed for libdrag
vs default operations on an AMD Phenom II X2 550. –
: no variation, S : Subnormals are slower, Z : all zero
exponent or significand values are faster, M : mixture of
several effects

the performance of vector operations. These instructions
allow 1-4 independent computations of the same opera-
tion (divide, add, subtract, etc) to be performed at once
using large registers. By placing the first set of operands
in the top half of the register, and the second set of
operands in the bottom half, multiple computations can
be easily performed with a single opcode. Intel does not
provide significant detail about the execution of these in-
structions and does not provide guarantees about their
performance behavior.

7.1 Escort overview
Escort performs several transforms during compilation
designed to remove timing side channels. First, they
modify ’elementary operations’ (floating point math op-
erations for the purpose of this paper). Second, they per-
form a number of basic block linearizations, array access



Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 186.46 186.48 186.50 186.44 186.42 186.49 186.50 186.48 186.51
1.0 186.45 186.48 195.93 195.94 195.93 195.86 186.48 195.87 186.48

1e10 186.51 186.49 195.92 195.90 195.92 195.87 186.47 195.86 186.46
1e+200 186.50 186.50 195.90 195.94 195.89 195.91 186.46 195.90 186.50
1e-300 186.48 186.44 195.91 195.88 195.93 195.92 186.53 195.95 186.44
1e-42 186.44 186.51 195.92 195.94 195.87 195.89 186.51 195.93 186.47
256 186.49 186.49 195.91 195.91 195.87 195.89 186.45 195.91 186.44
257 186.46 186.47 195.96 195.92 195.92 195.96 186.49 195.98 186.45

1e-320 186.49 186.49 186.43 186.48 186.49 186.49 186.50 186.52 186.46

Figure 14: Division timing for double precision floats on Intel i5-4460+Escort

Dividend
Divisor

0.0 1.0 1.0e-10 1.0e-323 1.0e-43 1.0e100 256 257

Runtime (Seconds)
0.0 10.09 10.08 10.08 10.08 10.08 10.08 10.08 10.10
1.0 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55

1.0e-10 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55
1.0e-323 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08
1.0e-43 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55
1.0e100 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55

256 10.08 10.08 10.55 10.08 10.57 10.55 10.08 10.57
257 10.09 10.08 10.55 10.08 10.57 10.55 10.08 10.55

Figure 15: Division timing for double precision floats on Intel i5-4460 macro-test

changes, and branch removals to transform the control
flow of the program to constant time and minimize side
effects.

We do not evaluate the efficacy of the higher level con-
trol flow transforms and instead evaluate only the ele-
mentary operations.

Escort’s tool is to construct a set of dummy operands
(the escort) that are computed at the same time as the
secret operands to obscure the running time of the se-
cret operands. Escort places the dummy arguments in
one lane of the SIMD instruction, and the sensitive argu-
ments in another lane. Since the instruction only retires
when the full set of computations are complete, the run-
ning time of the entire operation is hypothesized to be
dependent only on the slowest operation. This is true if
and only if the different lanes are computed in parallel.
To obscure the running time of the sensitive operands,
Escort places two subnormal arguments in the dummy
lane of all modified operations under the assumption that
this will exercise the slowest path through the hardware.

Escort will replace most floating point operations it en-
counters. However, if it can prove (using the Z3 SMT
solver [4]) that the operation will never have subnormal

values as operands it declines to replace the operation.
This means that if a function filters out subnormals be-
fore performing computation, the computation will be
done with standard scalar floating point operations and
not vector operations. This results in significant perfor-
mance gains when applicable, as the scalar operations
can be two orders of magnitude faster than the subnormal
vector operations. The replacement operations consist of
hand-coded assembly contained in a library; libdrag.

However, operations that do not receive subnormals
can still exhibit timing differences. As seen in figure 7
and summarized in figure 9 timing differences arise on
value types that can commonly occur (0, powers of 2,
etc). While significantly less obvious than the impact of
subnormals, these still constitute a potential timing side
channel. libdrag can easily fix this, at serious perfor-
mance cost, by enabling the floating point replacements
for all floating point operations with no exceptions.

To determine if Escort closes floating point timing side
channel when enabled, we measured the timing behavior
of Escort’s libdrag floating point operations, as well
as the end-to-end runtime of toy programs compiled un-
der Escort.



7.2 libdrag micro-benchmarks
For the micro-benchmarking of the libdrag functions
we use a simple tool we developed for running timing
tests of library functions based on Intel’s recommenda-
tions for instruction timing. This is the same tool we
used to produce measurements for section 3.

We benchmarked each of libdrag’s functions
against a range of valid numbers on several different
CPUs. We do not present results for Not-a-Number
(NaN) or infinities.

7.2.1 Results on Intel i5-4460

Our results for the Intel i5-4460 CPU roughly correspond
to the variations presented in [15] (which tested on an In-
tel i7-2600) for libdrag. We do not observe any mea-
surable timing variation in any add, multiply, or subtract
operations for single or double precision floating point.
We do observe notable timing differences based on argu-
ment values for single and double precision division and
square-root operations. The cross table results for dou-
ble precision division are shown in figure 14. Figure 12
summarizes the timing variations we observed.

For division, it appears that the numerator has no im-
pact on the running time of the computation. The de-
nominator shows variation based on if the significand or
exponent is all zero bits. When either portion is zero in
the denominator computations run consistently faster in
both single and double precision floating point. Differ-
ences observed range from 2% to 5% in contrast to the
2500% differences observed in section 3.

Square root shows a similar behavior, where if either
the significand or exponent is all 0 bits the computation
runs consistently faster. This matches the behavior seen
for many operations in scalar computations. (See figure
9)

An interesting outcome of this behavior is that subnor-
mal values cause a speedup under libdrag rather than
the slowdown observed under scalar operations.

We speculate that this is the result of fast paths in the
microcode handling for vector operations. Using perfor-
mance counters we determined that all vector operations
containing a subnormal value execute microcode rather
than hardwired logic on the FPU hardware. As all val-
ues with a zero significand or exponent experienced a
speedup, we believe that the division and square root mi-
crocode handles these portions separately with a shortcut
in the case of zero. Intel did not release any details on the
cause of these timing effects when asked.

7.2.2 AMD Phenom II X2 550

Figure 13 summarizes our results on the AMD Phenom
II X2 550. As with the Intel i5-4460 we observe timing
variation in the AMD Phenom II X2 550. However, the
variation is now confined to addition and subtraction with

subnormal values. By examining the cycle times for each
operation in the default and libdrag case we found
that the total cycle time for an escorted add or subtract is
approximately equal to the sum of the cycle counts for a
subnormal,subnormal operation and the test case. Thus,
we believe that the AMD Phenom II X2 550 is perform-
ing each operation sequentially and with the same hard-
ware or microcode as scalar operations for addition and
subtraction.

7.3 Escort compiled toy programs
For end-to-end tests we wrote toy programs that perform
a specified floating point operation an arbitrary number
of times, and compiled them under Escort and gcc. We
then use the Linux time utility to measure runtimes of
the entire program. We designed the test setup such that
each run of the test program performed the same value
parsing and setup steps regardless of the test values, with
only the values entering the computation differing be-
tween runs. We ran the target computation 160,000,000
times per execution, and ran each test 10 times. We see
the same effects as in our microbenchmarks. Figure 15
shows the crosstable for these results. Note that cells are
colorized if they differ by 2% rather than 1 cycle.

7.4 libdrag modified Firefox
We modified a build of Firefox 25 in consultation
with Rane et al [15] to match the version they tested.
Since multiply no longer shows any timing variation
in libdrag we are restricted to observing a potential
≤ 2% difference in only the divide, which occurs once
per pixel regardless of the kernel. Additionally, since the
denominator is the portion controlled by the attacker and
the secret value is the numerator, we are not able to up-
date the pixel stealing attack for the modified Firefox 25.

The modifications to Firefox 25 were confined to hand
made changes to the feConvolveMatrix implemen-
tation targeted in [2]. We did not test other SVG filters
for vulnerability under the Escort/libdrag modifica-
tions.

Given the observed timing variations in the AMD Phe-
nom II X2 550 in section 7.2.2 we believe that multiple
SVG filters would be timing side channel vulnerable un-
der Escort on that CPU.

7.5 Escort summary
Unfortunately our benchmarks consistently demon-
strated a small but detectable timing difference for
libdrag’s vector operations based on operand values.
For our test Intel CPUs it appears that div and mul
exhibit timing differences under Escort. For our AMD
CPUs we observed variation only for add/sub. Addi-
tionally, these differences are no more than 5% as com-
pared to the 500% or more differences observed in scalar



operations. We have made Rane, Lin and Tiwari aware
of these findings.

The ’escort’ mechanism can only serve as an effective
defense if vector operations are computed in parallel. In
all CPUs we tested the most likely explanation for the
observed timing difference is that vector operations are
executed serially when in microcode. As mentioned in
section 7.2.1 we know that any vector operation includ-
ing a subnormal argument is executed in microcode, and
all evidence supports the microcode executing vector op-
erations serially. Thus, absent substantial architectural
changes, we do not believe that the ’escort’ vector mech-
anism can close all floating point data timing channels.

8 GPU floating point performanace
In this section we discuss the results of GPU floating
point benchmarks, and the use of GPU acceleration in
SVG filters for Google Chrome.

8.1 Browser GPU support
All major browsers make use of GPU hardware accel-
eration to improve performance for various applications.
However, only two currently make use of GPUs for SVG
and CSS transforms; Safari and Chrome. Currently, Sa-
fari only supports a subset of CSS transformations on the
GPU, and none of the SVG transforms. Chrome supports
a subset of the CSS and SVG filters on the GPU. Firefox
intends to port filters to the GPU, but there is currently
no support.

8.2 Performance
We performed a series of CUDA benchmarks on an
Nvidia GeForce GT 430 to determine the impact of sub-
normal values on computation time. The results for divi-
sion are shown in figure 16. All other results (add, sub,
mul) were constant time regardless of the inputs..

As figure 16 shows, subnormals induce significant
slowdowns on divsion operations for single precision
floats. Unfortunately, no SVG filters implemented in
Chrome on the GPU perform tight division loops. Thus,
extracting timing differences from the occational divi-
sion they do perform is extremely difficult.

If a filter were found to perform tight division loops, or
a GPU that has timing variation on non-division opera-
tions were found, the same attacks as in previous sections
could be ported to the GPU accelerated filters.

We believe that even without a specific attack, the
demonstration of timing variation based on operand val-
ues in GPUs should invalidate “move to the GPU” as a
defensive strategy.

9 Related work
Felten and Schneider were the first to mount timing side-
channel attacks against browsers. They observed that re-

sources already present in the browser’s cache are loaded
faster than ones that must be requested from a server,
and that this can be used by malicious JavaScript to learn
what pages a user has visited [6]. Felten and Schneider’s
history sniffing attack was later refined by Zalewski [18].
Because many sites load resources specific to a user’s ap-
proximate geographic location, cache timing can reveal
the user’s location, as shown by Jia et al. [10].

JavaScript can also ask the browser to make a cross-
origin request and then learn (via callback) how long the
response took to arrive and be processed. Timing chan-
nels can be introduced by the code that runs on the server
to generate the response; by the time it takes the response
to be transmitted over the network, which will depend on
how many bytes it contains; or by the browser code that
attempts to parse the response. These cross-site timing
attacks were introduced by Bortz, Boneh, and Nandy [3],
who showed they could be used to learn the number of
items in a user’s shopping cart. Evans [5] and, later, Gel-
ernter and Herzberg [7], showed they could be used to
confirm the presence of a specific string in a user’s search
history or webmail mailbox. Van Goethem, Joosen, and
Nikiforakis [17] observed that callbacks introduced to
support HTML5 features allow attackers to time individ-
ual stages in the browser’s response-processing pipeline,
thereby learning response size more reliably than with
previous approaches.

The interaction of new browser features — TypedAr-
rays, which translate JavaScript variable references to
memory accesses more predictably, and nanosecond-
resolution clocks — allow attackers to learn whether spe-
cific lines have been evicted from the processor’s last-
level cache. Yossi Oren first showed that such mi-
croarchitectural timing channels can be mounted from
JavaScript [14], and used them to learn gross system ac-
tivity. Recently, Gras et al. [8] extended Oren’s tech-
niques to learn where pages are mapped in the browser’s
virtual memory, defeating address-space layout random-
ization. In response, browsers rounded down the clocks
provided to JavaScript to 5 µs granularity. Kohlbren-
ner and Shacham [12] proposed a browser architecture
that degrades the clocks available to JavaScript in a more
principled way, drawing on ideas from the “fuzzy time”
mitigation [9] in the VAX VMM Security Kernel [11].

Browsers allow Web pages to apply SVG filters to
elements including cross-origin iframes. If filter pro-
cessing time varies with the underlying pixel values,
those pixel values will leak. Paul Stone [16] and, in-
dependently, Kotcher et al. [13], showed that such pixel-
stealing attacks are feasible; the filters they exploited had
pixel-dependent branches. Andrysco et al. [2] showed
that pixel-stealing was feasible even when the filter exe-
cuted the same instruction trace regardless of pixel val-
ues, provided those instructions exhibit data-dependent



Dividend
Divisor

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 5.17 5.85 5.85 5.85 5.85 5.89 5.89 5.85 5.85
1.0 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59

1e10 6.19 2.59 2.59 2.59 5.96 8.64 8.64 2.59 2.59
1e+30 6.19 2.59 2.59 2.59 5.96 8.64 8.64 2.59 2.59
1e-30 6.19 2.59 7.82 6.51 2.59 8.40 8.40 2.59 2.59
1e-41 6.19 10.21 8.92 8.92 8.13 8.41 8.41 10.23 10.23
1e-42 6.19 10.21 8.92 8.92 8.13 8.41 8.41 10.23 10.23
256 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59
257 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59

Figure 16: Division timing for single precision floats on Nvidia GeForce GT 430

timing behavior, as floating-point instructions do. Rane,
Lin, and Tiwari [15] proposed program transformation
that allow the processor floating-point unit to be used
while eliminating data-dependent instruction timing, in
the hope of defeating Andrysco et al.’s attacks.

10 Conclusions and future work
We have extensively benchmarked floating point perfor-
mance on a range of CPUs under scalar operations, FTZ/-
DAZ FPU flags, -ffast-math compiler options, and
Rane, Lin, and Tiwari’s Escort. We identified operand-
dependent timing differences on all tested platforms and
in all configurations; many of the timing differences we
identified were overlooked in previous work.

In the case of Escort, our data strongly suggests that
processors execute SIMD operations on subnormal val-
ues sequentially, not in parallel. If this is true, a redesign
of the vector processing unit would be required to make
Escort effective at closing all floating-point timing chan-
nels.

We have revisited browser implementations of SVG
filters, and found (and responsibly disclosed) exploitable
timing variations in the latest versions of Chrome, Fire-
fox, and Safari.

Finally, we have shown that modern GPUs exhibit
slowdowns in processing subnormal values, meaning
that the problem extends beyond x86 processors. We
are currently evaluating whether these slowdowns al-
low pixel stealing using SVG filters implemented on the
GPU.

We have uncovered enough variation in timing across
Intel and AMD microarchitectural revisions that we be-
lieve that comprehensive measurement on many differ-
ent processor families — in particular, ARM — will be
valuable. For the specific processors we studied, we be-
lieve we are in a position to identify specific flags, spe-
cific operations, and specific operand sizes that run in
constant time. Perhaps the best one can hope for is an

architecture-aware library that could ensure no timing
variable floating point operations occur while preserving
as much of the IEEE-754 standard as possible.

Tools, proof-of-concept attacks, and additional bench-
mark data are available at https://cseweb.ucsd.e
du/~dkohlbre/floats.

We close with broader lessons from our work.

For software developers: We believe that floating
point operations as implemented by CPUs today are sim-
ply too unpredictable to be used in a timing-security sen-
sitive context. Only defensive measures that completely
remove either SSE floating point operations (fixed-point
implementations) or remove the sensitive nature of the
computation are completely effective. Software that op-
erates on sensitive, non-integer values should use fixed-
point math, for example by including Andrysco et al.’s
libfixedtimefixedpoint, which Almeida et al.
recently proved runs in constant time [1].

For browser vendors: Some browser vendors have
expended substantial effort in redesigning their SVG fil-
ter code in the wake of the Andrysco et al. attacks. Even
so, we were able to find (different) exploitable floating-
point timing differences in Chrome, Firefox, and Safari.
We believe that the attack surface is simply too large; as
new filters and features are added additional timing chan-
nels will inevitably open. We recommend that browser
vendors disallow cross-origin SVG filters and other com-
putation over cross-origin pixel data in the absence of
Cross-Origin Resource Sharing (CORS) authorization.

It is important that browser vendors also consider
patching individual timing side channels in SVG filters
as they are found. Even with a origin policy that blocks
the cross-origin pixel stealing, any timing side channel
allows an attacking page to run a history sniffing at-
tack. Thus, a comprehensive approach to SVG filters as a
threat to user privacy combines disallowing cross-origin



SVG filters and removes timing channels with constant
time coding techniques.

For processor vendors: Processor vendors have re-
sisted calls to document which of their instructions run
in constant time regardless of operands, even for opera-
tions as basic as integer multiplication. It is possible that
floating point instructions are unusual not because they
exhibit timing variation but because their operands have
meaningful algebraic structure, allowing intelligent ex-
ploration of the search space for timing variations; even
so, we identified timing variations that Andrysco et al.
overlooked. How much code that is conjectured to be
constant-time is in fact unsafe? Processor vendors should
document possible timing variations in at least those in-
structions commonly used in crypto software.
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